Exponential Integrators for Fractional Partial Differential Equations

Roberto Garrappa

Department of Mathematics - University of Bari - Italy roberto.garrappa@uniba.it

International Symposium on Fractional PDEs: Theory, Numerics and Applications, Newport (RI), June 3–5 2013

Outline

- 2 Time–fractional PDEs
- 3 Exponential Integrators for fractional-order problems
- 4 Numerical approximation of the Mittag–Leffler function with matrix arguments
- 5 Numerical experiments

Exponential integrators for ODEs

$$U'(t) = AU(t) + F(t, U(t)), \qquad U(0) = U_0$$

- \bullet the size of the system is very large $(10^3 \sim 10^6)$
- A is a sparse matrix
- A stiff but F(t, U(t)) non stiff: implicit or explicit methods ?

Problems from spatial discretization of PDEs

Main idea of Exponential integrators

$$U(t) = e^{tA}U_0 + \int_0^t e^{(t-\tau)A}F(\tau, U(\tau))d\tau$$

Device numerical schemes that use the evaluation of e^{tA}

Advantages: stability (stiff term evaluated exactly) with explicit schemes Disadvantages: computation of *e*^{tA}

R.Garrappa (Univ. of Bari - Italy)

Exponential integrators for FPDEs

Exponential integrators for ODEs

$$U'(t) = AU(t) + F(t, U(t)), \qquad U(0) = U_0$$

- \bullet the size of the system is very large $(10^3 \sim 10^6)$
- A is a sparse matrix
- A stiff but F(t, U(t)) non stiff: implicit or explicit methods ?

Problems from spatial discretization of PDEs

Main idea of Exponential integrators

$$U(t)=e^{tA}U_0+\int_0^t e^{(t- au)A}F(au,U(au))d au$$

Device numerical schemes that use the evaluation of e^{tA}

Advantages: stability (stiff term evaluated exactly) with explicit schemes Disadvantages: computation of e^{tA}

R.Garrappa (Univ. of Bari - Italy)

Exponential integrators for FPDEs

Exponential integrators for ODEs: examples

$$U(t) = e^{tA}U_0 + \int_0^t e^{(t-\tau)A}F(\tau, U(\tau))d\tau$$

Integration on a grid $t_n = nh$

- $F(\tau, U(\tau))$ approximated by $F_n = F(t_n, U_n)$ on $[t_n, t_{n+1}]$ Exponential Euler : $U_{n+1} = e^{hA}U_n + h\varphi_1(hA)F_n$
- $F(\tau, U(\tau))$ approximated by linear interpolation $F_n + \frac{t_n \tau}{t_n t_{n-1}} (F_n F_{n-1})$ Second order E.I. : $U_{n+1} = e^{hA}U_n + h\varphi_1(hA)F_n + h\varphi_2(hA)(F_n - F_{n-1})$
- Other approaches: Exponential Runge–Kutta, Exponential Adams methods, Exponential Rosenbrock-type methods, and so on ...

$$\varphi_1(z) = \frac{e^z - 1}{z}, \quad \varphi_2(z) = \frac{e^z - z - 1}{z^2}$$

Review papers and software package

Acta Numerica (2010), pp. 209–286 © Cambridge University P doi:10.1017/S0962492910000048 Printed in the United	NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
Exponential integrators	
Marlis Hochbruck Karlsraher Institut für Technologie. Institut für Angewandte und Numerische Mathematik, D-76128 Karlsrahe.	A review of exponential integrators for first order semi-linear problems by
E-mail: marlis.hochbruck@kit.edu	borislav v. Minenev and Will M. Wright
Alexander Ostermann Institut für Mathematik, Universität Innsbruck,	
A-6020 Innsbruck,	PREPRINT
Austria E-mail: alexander.ostermann@uibk.ac.at	NUMERICS NO. 2/2005

Acta Numerica 2010

http://www.math.ntnu.no/preprint/numerics/

EXPINT : A MATLAB package for exponential integrators¹. available at http://www.math.ntnu.no/num/expint/matlab.php

¹Håvard Berland, Bård Skaflestad, and Will M. Wright. "EXPINT—A MATLAB package for exponential integrators". In: ACM Trans. Math. Softw. 33.1 (2007).

Fractional partial differential equation

Time-fractional diffusion

$$\begin{aligned} &\frac{\partial^{\alpha}}{\partial t^{\alpha}}u(t,x) = \nu \nabla^{2}u(t,x) + f(t,x)\\ &\text{I.C.}: u(0,x) = u_{0}(x)\\ &\text{B.C.}: u(t,x) = g(t,x), t > 0, x \in \partial\Omega \end{aligned}$$

 $0 < \alpha < 1$: fractional diffusion equation

 $1 < \alpha < 2$: fractional wave equation

Papers of Schneider and Wyss (1989)² and Mainardi (1996)³

 $^2 W.$ R. Schneider and W. Wyss. "Fractional diffusion and wave equations". In: J. Math. Phys. 30.1 (1989), pp. 134–144.

³F. Mainardi. "The fundamental solutions for the fractional diffusion-wave equation". In: *Appl. Math. Lett.* 9.6 (1996), pp. 23–28.

From a FPDE to a system of FDEs: the linear case

$$\frac{\partial^{\alpha}}{\partial t^{\alpha}}u(t,x) = \nu \nabla^{2}u(t,x) + f(t,x)$$
$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = AU(t) + F(t), \quad U(0) = U_{0}$$

 $A \longleftrightarrow \nu \nabla^2$ $F(t) \longleftrightarrow$ Linear source term and B.C. $U_0 \longleftrightarrow$ I.C.

From a FPDE to a system of FDEs: the linear case

$$\frac{\partial^{\alpha}}{\partial t^{\alpha}}u(t,x) = \nu\nabla^{2}u(t,x) + f(t,x)$$
$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = AU(t) + F(t), \quad U(0) = U_{0}$$

$$A \longleftrightarrow \nu \nabla^2$$
 $F(t) \longleftrightarrow$ Linear source term and B.C. $U_0 \longleftrightarrow$ I.C.

Finite difference methods

.

$$\nabla^{2} u_{i,j}(t) \approx \frac{u_{i-1,j}(t) - 2u_{i,j}(t) + u_{i+1,j}(t)}{(\Delta x_{1})^{2}} + \frac{u_{i,j-1}(t) - 2u_{i,j}(t) + u_{i,j+1}(t)}{(\Delta x_{2})^{2}} + \frac{u_{i,j}(t) - 2u_{i,j}(t) + u_{i,j+1}(t)}{(\Delta x_{2})^{2}} + \frac{u_{i,j}(t) - 2u_{i,j}(t) + u_{i,j+1}(t)}{(\Delta x_{2})^{2}} + \frac{u_{i,j-1}(t) - 2u_{i,j}(t) + u_{i,j+1}(t)}{(\Delta x_{2})^{2}} + \frac{u_{i,j}(t) - 2u_{i,j}(t) + u_{i,j}(t)}{(\Delta x_{2})^{2}} + \frac{u_{i,j}(t) - 2u_{i,j}(t) + u_{i,j}(t)}{$$

From a FPDE to a system of FDEs: the linear case

$$\frac{\partial^{\alpha}}{\partial t^{\alpha}}u(t,x) = \nu \nabla^{2}u(t,x) + f(t,x)$$
$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = AU(t) + F(t), \quad U(0) = U_{0}$$

$$A \longleftrightarrow \nu \nabla^2$$
 $F(t) \longleftrightarrow$ Linear source term and B.C. $U_0 \longleftrightarrow$ I.C.

Finite elements methods

$$egin{aligned} &u(t,x)pprox u_h(t,x)=\sum_{j=1}^{N_h}U_j(t)\Phi_j(x)\ &\sum_{j=1}^{N_h}rac{d^lpha}{dt^lpha}U_j(t)(\Phi_j,\Phi_k)+\sum_{j=1}^{N_h}U_j(t)(
abla^2\Phi_j,
abla^2\Phi_k)=(f,\Phi_k)\ &k=1,\ldots,N_h \end{aligned}$$

From a FPDE to a system of FDEs: non linear case

$$\frac{\partial^{\alpha}}{\partial t^{\alpha}}u(t,x) = \nu\nabla^{2}u(t,x) + f(t,u(t,x))$$
$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = AU(t) + F(t,U(t)), \quad U(0) = U_{0}$$

Examples of non linear time-fractional PDEs:

- Bonhoeffer–van der Pol and Brusselator⁴
- other problems⁵

⁴V. Gafiychuk and B. Datsko. "Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems". In: *Comput. Math. Appl.* 59.3 (2010), pp. 1101–1107.

⁵V. Gafiychuk, B. Datsko, and V. Meleshko. "Mathematical modeling of time fractional reaction-diffusion systems". In: *J. Comput. Appl. Math.* 220.1-2 (2008), pp. 215–225.

Generalization of Exponential Integrators to FDEs

$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = A \cdot U(t) + F(t)$$
$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = A \cdot U(t) + F(t, U(t))$$

Linear term: $A \cdot U(t)$ stiff *A* large and sparse Source term: F(t) linear F(t, U(t)) non linear but non-stiff

Main steps:

- Derivation of a Variation-of-constant formula for FDEs
- Application of a discretization scheme
- Evaluation of a counterpart of the exponential function

Generalization of Exponential Integrators to FDEs

$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = A \cdot U(t) + F(t)$$
$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = A \cdot U(t) + F(t, U(t))$$

Linear term: $A \cdot U(t)$ stiff *A* large and sparse Source term: F(t) linear F(t, U(t)) non linear but non-stiff

Main steps:

- Derivation of a Variation-of-constant formula for FDEs
- Application of a discretization scheme
- Sevaluation of a counterpart of the exponential function

The variation-of-constant formula for FDEs

$$\begin{aligned} \frac{d^{\alpha}}{dt^{\alpha}}U(t) &= AU(t) + F(t) \\ & \downarrow \quad \text{in the Laplace transform domain} \\ s^{\alpha}\hat{U}(s) - s^{\alpha-1}U_0 &= A\hat{U}(s) + \hat{F}(s) \\ & \downarrow \quad \text{solve w.r.t. } \hat{U}(s) \\ \hat{U}(s) &= s^{\alpha-1}(s^{\alpha}I - A)^{-1}U_0 + (s^{\alpha}I - A)^{-1}\hat{F}(s) \\ & \downarrow \quad \text{in the time domain} \\ \text{V.o.C.: } U(t) &= e_{\alpha,1}(t; -A)U_0 + \int_0^t e_{\alpha,\alpha}(t - s; -A)F(s)ds \end{aligned}$$

The kernel $e_{\alpha,\beta}(t; A)$ and the Mittag–Leffler (ML) function

$$e_{\alpha,\beta}(t;A) = \mathcal{L}^{-1}\left(s^{\alpha-\beta}\left(s^{\alpha}I + A\right)^{-1}\right) = t^{\beta-1}E_{\alpha,\beta}\left(-t^{\alpha}A\right)$$

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$

The variation-of-constant formula for FDEs

$$\begin{aligned} \frac{d^{\alpha}}{dt^{\alpha}}U(t) &= AU(t) + F(t) \\ & \downarrow \quad \text{in the Laplace transform domain} \\ s^{\alpha}\hat{U}(s) - s^{\alpha-1}U_0 &= A\hat{U}(s) + \hat{F}(s) \\ & \downarrow \quad \text{solve w.r.t. } \hat{U}(s) \\ \hat{U}(s) &= s^{\alpha-1}(s^{\alpha}I - A)^{-1}U_0 + (s^{\alpha}I - A)^{-1}\hat{F}(s) \\ & \downarrow \quad \text{in the time domain} \\ \text{V.o.C. : } U(t) &= e_{\alpha,1}(t; -A)U_0 + \int_0^t e_{\alpha,\alpha}(t - s; -A)F(s)ds \end{aligned}$$

The kernel $e_{\alpha,\beta}(t; A)$ and the Mittag–Leffler (ML) function

$$e_{\alpha,\beta}(t;A) = \mathcal{L}^{-1}\left(s^{\alpha-\beta}\left(s^{\alpha}I + A\right)^{-1}\right) = t^{\beta-1}E_{\alpha,\beta}\left(-t^{\alpha}A\right)$$

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$

Fractional exponential Euler method

Write the Variation-of-Constants (VoC) formula in a piecewise form

$$U(t_n) = e_{\alpha,1}(t_n; -A)U_0 + \sum_{j=0}^{n-1} \int_{t_j}^{t_{j+1}} e_{\alpha,\alpha}(t_n - s; -A)F(s)ds$$

Solution P(s) Approximate F(s) by a constant value

$$F(s) pprox F_j = F(t_j), \quad s \in [t_j, t_{j+1}]$$

Exactly integrate

$$U(t_n) = e_{\alpha,1}(t_n; -A)U_0 + h^{\alpha} \sum_{j=0}^{n-1} W_{n-j}F_j$$
$$W_n = e_{\alpha,\alpha+1}(n; -h^{\alpha}A) - e_{\alpha,\alpha+1}(n-1; -h^{\alpha}A)$$

Adams Exponential Integrators for FDEs

Write the Variation-of-Constants (VoC) formula in a piecewise form

$$U(t_n) = e_{\alpha,1}(t_n; -A)U_0 + \sum_{j=0}^{n-1} \int_{t_j}^{t_{j+1}} e_{\alpha,\alpha}(t_n - s; -A)F(s)ds$$

2 Approximate F(s) by a *L*-degree polynomial in each interval $[t_j, t_{j+1}]$

$$egin{aligned} \mathsf{F}(s) = \mathsf{F}(t_j + heta h) &pprox \sum_{\ell=0}^L (-1)^\ell inom{- heta + 1}{\ell}
abla^\ell \mathsf{F}_{j+1} \end{aligned}$$

- $\blacktriangleright F_n = F(t_n)$
- $\nabla^{\ell} F_n$: backward differences of order ℓ
- $\binom{-\theta+1}{\ell}$: binomial coefficients

Exactly integrate

Adams Exponential Integrators for FDEs

$$U_n = S.T. + h^{\alpha} \sum_{j=L}^{n-1} \sum_{\ell=0}^{L} \varphi_{\alpha,\ell}(n-j; -h^{\alpha}A) \nabla^{\ell} F_{j+1}$$

$$\varphi_{\alpha,\ell}(n;z) = (-1)^{\ell} \int_0^1 \binom{-\theta+1}{\ell} e_{\alpha,\alpha}(n-\theta;z) d\theta$$

=
$$\sum_{k=0}^{\ell} \left(p_{\ell,k} e_{\alpha,\alpha+k+1}(n;z) - q_{\ell,k} e_{\alpha,\alpha+k+1}(n-1;z) \right)$$

	<i>p</i> _{ℓ,0}	$p_{\ell,1}$	p _{ℓ,2}	p ℓ,3	<i>p</i> ℓ,4	$q_{\ell,0}$	$q_{\ell,1}$	$q_{\ell,2}$	q ℓ,3	$q_{\ell,4}$
$\ell = 0$	1					1				
$\ell = 1$	-1	1				0	1			
$\ell=2$	0	$-\frac{1}{2}$	1			0	$\frac{1}{2}$	1		
$\ell=3$	0	$-\frac{1}{6}$	0	1		1	ō	$\frac{1}{3}$	1	
$\ell=4$	0	$-\frac{1}{12}$	$-\frac{1}{12}$	$\frac{1}{2}$	1	0	$\frac{1}{4}$	$\frac{11}{12}$	$\frac{3}{2}$	1

Adams Exponential Integrators for FDEs

$$U_n = S.T. + h^{\alpha} \sum_{j=L}^{n-1} \sum_{\ell=0}^{L} \varphi_{\alpha,\ell}(n-j;-h^{\alpha}A) \nabla^{\ell} F_{j+1}$$

Main advantages: accuracy and stability⁶

• Order depends on the smoothness of the linear source term and not of the true solution

$$F(t) \in \mathcal{C}^{L+1} \Longrightarrow \operatorname{Error} = \mathcal{O}(h^{L+1})$$

• Stiffness due to large values in $\sigma(A)$ does not affect the stability

Some problems to solve:

• evaluation of $\varphi_{\alpha,\ell}(n; -h^{\alpha}A)$ (and hence the ML functions)

⁶R. Garrappa. "A family of Adams exponential integrators for fractional linear systems". In: *Comput. Math. Appl.* (2013), in print.

Application in control theory problems

Linear time-invariant system of FDEs

 $\begin{cases} D_0^{\alpha} x(t) = Ax(t) + Bu(t) \\ y(t) = C^{\mathsf{T}} x(t), \quad x(0) = x_0 \end{cases} \qquad A \in \mathbb{R}^{\mathsf{N} \times \mathsf{N}}, \ B \in \mathbb{R}^{\mathsf{N} \times \mathsf{m}}, \ C \in \mathbb{R}^{\mathsf{N} \times \mathsf{p}} \end{cases}$

No need for direct evaluation of the state x(t) :

V.o.C.:
$$y(t) = C^{T} e_{\alpha,1}(t; -A) x_{0} + \int_{0}^{t} C^{T} e_{\alpha,\alpha}(t-s; -A) Bu(s) ds$$

Fractional Exp. Adams:
$$y_n = S.T. + h^{\alpha} \sum_{j=L}^{n-1} \sum_{\ell=0}^{L} \varphi_{\alpha,\ell}(n-j;-h^{\alpha}A) \nabla^{\ell} u_{j+1}$$

$$\varphi_{\alpha,\ell}(n-j;Z) = C^T \sum_{k=0}^{\ell} \left(p_{\ell,k} e_{\alpha,\alpha+k+1}(n;Z) - q_{\ell,k} e_{\alpha,\alpha+k+1}(n-1;Z) \right) B$$

MIMO : external dimensions m and p smaller than the internal dimension N SISO : scalar weights

From a FPDE to a system of FDEs: the non linear case

$$\frac{\partial^{\alpha}}{\partial t^{\alpha}}u(t,x) = \nu\nabla^{2}u(t,x) + f(t,u(t,x))$$
$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = AU(t) + F(t,U(t)), \quad U(0) = U_{0}$$

Fractional exponential Euler scheme:

$$U_n = e_{lpha,1}(t_n;-A)U_0 + h^lpha \sum_{j=0}^{n-1} W^{(1)}_{n-j}F_j$$

Fractional exponential trapezoidal scheme:

$$U_{n} = e_{\alpha,1}(t_{n}; -A)U_{0} + h^{\alpha}\tilde{W}_{n}F_{0} + h^{\alpha}\left(\sum_{j=1}^{n-1}W_{n-j}^{(2)}F_{j} - W_{0}^{(2)}F_{n-2} + 2W_{0}^{(2)}F_{n-1}\right)$$

$$\begin{split} W_n^{(1)} &= e_{\alpha,\alpha+1}(n; -h^{\alpha}A) - e_{\alpha,\alpha+1}(n-1; -h^{\alpha}A) \\ W_0^{(2)} &= e_{\alpha,\alpha+2}(1; -h^{\alpha}A) \\ W_n^{(2)} &= e_{\alpha,\alpha+2}(n-1; -h^{\alpha}A) - 2e_{\alpha,\alpha+2}(n; -h^{\alpha}A) + e_{\alpha,\alpha+2}(n+1; -h^{\alpha}A) \\ \tilde{W}_n &= e_{\alpha,\alpha+2}(n-1; -h^{\alpha}A) + e_{\alpha,\alpha+1}(n; -h^{\alpha}A) - e_{\alpha,\alpha+2}(n; -h^{\alpha}A) \end{split}$$

The Mittag-Leffler function

Introduced in 1903 by Magnus Gösta Mittag-Leffler

$$E_{lpha}(z) = \sum_{k=0}^{\infty} rac{z^k}{\Gamma(lpha k+1)}, \quad lpha \in \mathbb{C}, \quad \Re(lpha) > 0$$

The generalization with two parameters

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}, \quad \alpha, \beta \in \mathbb{C}, \quad \Re(\alpha) > 0, \Re(\beta) > 0$$

A generalized Mittag–Leffler function

$$e_{\alpha,\beta}(t;\lambda) = t^{\beta-1}E_{\alpha,\beta}(-t^{\alpha}\lambda)$$

t is the independent variable

 λ is a real/complex scalar/matrix argument

We will focus on $\alpha, \beta \in \mathbb{R}$ and $\beta = \alpha + k$, k = 0, 1, ...

The Mittag-Leffler function

Introduced in 1903 by Magnus Gösta Mittag-Leffler

$$E_{lpha}(z) = \sum_{k=0}^{\infty} rac{z^k}{\Gamma(lpha k+1)}, \quad lpha \in \mathbb{C}, \quad \Re(lpha) > 0$$

The generalization with two parameters

$$E_{lpha,eta}(z) = \sum_{k=0}^{\infty} rac{z^k}{\Gamma(lpha k+eta)}, \quad lpha,eta\in\mathbb{C}, \quad \Re(lpha)>0, \Re(eta)>0$$

A generalized Mittag-Leffler function

$$e_{\alpha,\beta}(t;\lambda) = t^{\beta-1}E_{\alpha,\beta}(-t^{\alpha}\lambda)$$

t is the independent variable

 λ is a real/complex scalar/matrix argument

We will focus on $\alpha, \beta \in \mathbb{R}$ and $\beta = \alpha + k$, k = 0, 1, ...

The ML function and FDEs

$$e_{\alpha,\beta}(t;\lambda) = t^{\beta-1}E_{\alpha,\beta}(-t^{\alpha}\lambda)$$
 $E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$

The ML function plays for FDEs the same role of the exp function for ODEs

ODE :	$\begin{cases} Dy(t) + \lambda y(t) = 0\\ y(0) = y_0 \end{cases}$	True solution $y(t) = e^{-t\lambda}y_0$
FDE : 0 < <i>α</i> < 1	$\begin{cases} \begin{array}{c} {}^C_0 D^\alpha y(t) + \lambda y(t) = 0 \\ y(0) = y_0 \end{array}$	True solution $y(t) = \frac{e_{\alpha,1}(t; \lambda)y_0}{t}$

ML function generalizes the exp function $e_{1,1}(t; \lambda) = e^{-t\lambda}$

- Books of Podlubny (1999) and Mainardi (2011)
- Code mlf.m available in the File Exchange service of
 MATLAB CENTRAL

Numerical evaluation of the ML function

Some challenging problems: fast evaluation of $e_{\alpha,\beta}(t;\lambda)$

extension to matrix arguments

$$e_{\alpha,\beta}(t;\lambda) = t^{\beta-1}E_{\alpha,\beta}(-t^{\alpha}\lambda), \quad E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$

Convergence of the series can be extremely slow

$$\mathcal{L}\Big(e_{lpha,eta}(t;\lambda);s\Big)=rac{s^{lpha-eta}}{s^{lpha}+\lambda}$$

$$e_{lpha,eta}(t,\lambda)=rac{1}{2\pi i}\int_{\mathcal{C}}e^{st}rac{s^{lpha-eta}}{s^{lpha}+\lambda}ds,$$

Numerical evaluation of the ML function

Some challenging problems: fast evaluation of $e_{\alpha,\beta}(t;\lambda)$

extension to matrix arguments

$$e_{\alpha,\beta}(t;\lambda) = t^{\beta-1}E_{\alpha,\beta}(-t^{\alpha}\lambda), \quad E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$

Convergence of the series can be extremely slow

The Laplace transform

$$\mathcal{L}\Big(e_{lpha,eta}(t;\lambda)\,;\,s\Big) = rac{s^{lpha-eta}}{s^{lpha}+\lambda}$$

Numerical guadrature in the inversion formula

$$e_{lpha,eta}(t,\lambda)=rac{1}{2\pi i}\int_{\mathcal{C}}e^{st}rac{s^{lpha-eta}}{s^{lpha}+\lambda}ds,$$

Numerical inversion of the LT: choice of the contour

$$e_{lpha,eta}(t,\lambda)=rac{1}{2\pi i}\int_{\mathcal{C}}e^{st}rac{s^{lpha-eta}}{s^{lpha}+\lambda}ds,$$

Parabolic contour:

- simplicity of the contour $C: z(u) = \mu(iu+1)^2$
- extension to matrices with real spectrum
- good accuracy with fast computation
- availability of error estimates for exp⁷
- extension to the Mittag-Leffler function⁸

⁷J. A. C. Weideman and L. N. Trefethen. "Parabolic and hyperbolic contours for computing the Bromwich integral". In: *Math. Comp.* 76.259 (2007), pp. 1341–1356.

⁸R. Garrappa and M. Popolizio. "Evaluation of generalized Mittag–Leffler functions on the real line". In: *Adv. Comput. Math.* (2012), in print.

$$e_{lpha,eta}(t,\lambda)=rac{1}{2\pi i}\int_{\mathcal{C}}e^{st}\mathcal{E}_{lpha,eta}(s)ds, \quad \mathcal{E}_{lpha,eta}(s)=\mathcal{L}\Big(e_{lpha,eta}(t,\lambda)\,;\,s\Big)=rac{s^{lpha-eta}}{s^{lpha}+\lambda}$$

Main steps in numerical inversion of LT on parabolic contours:

Determination of:

- Geometry parameter μ for $\mathcal{C}: z(u) = \mu(iu+1)^2$
- Number N of quadrature nodes $z_k = \mu(ikh+1)^2$, $k = -N, \dots, N$

• Step-size h

$$e_{\alpha,\beta}^{[h,N]}(t,\lambda) = \frac{h}{2\pi i} \sum_{k=-N}^{N} e^{tz_k} z'_k z_k^{\alpha-\beta} (z_k^{\alpha}+\lambda)^{-1}$$

$$e_{lpha,eta}(t,\lambda)=rac{1}{2\pi i}\int_{\mathcal{C}}e^{st}\mathcal{E}_{lpha,eta}(s)ds, \quad \mathcal{E}_{lpha,eta}(s)=\mathcal{L}\Big(e_{lpha,eta}(t,\lambda)\,;\,s\Big)=rac{s^{lpha-eta}}{s^{lpha}+\lambda}$$

Main steps in numerical inversion of LT on parabolic contours:

Determination of:

- Geometry parameter μ for $C: z(u) = \mu(iu + 1)^2$
- Number N of quadrature nodes $z_k = \mu(ikh+1)^2$, $k = -N, \dots, N$

• Step-size h

$$e_{\alpha,\beta}^{[h,N]}(t,\boldsymbol{A}) = \frac{h}{2\pi i} \sum_{k=-N}^{N} e^{tz_{k}} z_{k}^{\prime} z_{k}^{\alpha-\beta} \left(z_{k}^{\alpha} \boldsymbol{I} + \boldsymbol{A} \right)^{-1}$$

$$e_{lpha,eta}(t,\lambda)=rac{1}{2\pi i}\int_{\mathcal{C}}e^{st}\mathcal{E}_{lpha,eta}(s)ds, \quad \mathcal{E}_{lpha,eta}(s)=\mathcal{L}\Big(e_{lpha,eta}(t,\lambda)\,;\,s\Big)=rac{s^{lpha-eta}}{s^{lpha}+\lambda}$$

Main steps in numerical inversion of LT on parabolic contours:

Determination of:

- Geometry parameter μ for $C: z(u) = \mu(iu + 1)^2$
- Number N of quadrature nodes $z_k = \mu(ikh+1)^2$, $k = -N, \dots, N$

• Step-size h

$$e_{\alpha,\beta}^{[h,N]}(t,\boldsymbol{A})\cdot\boldsymbol{F}_{j} = \frac{h}{2\pi i}\sum_{k=-N}^{N}e^{tz_{k}}z_{k}'z_{k}^{\alpha-\beta}(z_{k}^{\alpha}\boldsymbol{I}+\boldsymbol{A})^{-1}\cdot\boldsymbol{F}_{j} \qquad \text{Solve } (z_{k}^{\alpha}\boldsymbol{I}+\boldsymbol{A})\boldsymbol{y} = \boldsymbol{F}_{j}$$

Selection of contour and quadrature parameters. Main goal:

$$\textit{Error} = e_{lpha,eta}(t,\lambda) - e_{lpha,eta}^{[h,n]}(t,\lambda) = \textit{DE} + \textit{TE} pprox \epsilon$$

Discretization error : • $DE = DE_+ + DE_-$ • $DE_+ = \frac{M_+(c)}{e^{2\pi c/h} - 1}$ $0 < c \le 1$ • $DE_- = \frac{M_-(d)}{e^{2\pi d/h} - 1}$ d > 0

Truncation error :

• $TE = O(|\mathcal{E}_{\alpha,\beta}(z_N)|)$

$$M_{+}(c) = \max_{0 < r \leq c} \int_{-\infty}^{\infty} \left| \mathcal{E}_{\alpha,\beta}(z(u+ir)) \right| du \qquad M_{-}(d) = \max_{0 < s \leq d} \int_{-\infty}^{\infty} \left| \mathcal{E}_{\alpha,\beta}(z(u-is)) \right| du$$

Singularities of the LT of the ML

$$DE_+ = rac{M_+(c)}{e^{2\pi c/h}-1}$$
 but $M_+(c) o \infty$ when $c o 1$

Error analysis for the ML function

$$DE_+ \approx DE_- \approx TE \approx \varepsilon$$

Balance $e^{-2\pi c/\sqrt{1+4c(1+c)}}$ and $M_+(c)$ to keep N at a low value⁹

⁹R. Garrappa and M. Popolizio. "Evaluation of generalized Mittag–Leffler functions on the real line". In: *Adv. Comput. Math.* (2012), in print.

Originally devised to find the solution of

$$Ax = b$$

- Iterative methods
- Look for approximation $x_m \approx A^{-1}b$ in

$$\mathcal{K}_m(A,b) = spanig\{b,\,Ab,\,A^2b,\,\ldots,\,A^{m-1}big\}$$

Main steps in Krylov subspace methods

- ① Construction of $\mathcal{K}_m(A, b) = span\{b, Ab, \ldots, A^{m-1}b\}$
- ② Choice of $x_m \in \mathcal{K}_m(A, b)$

Main steps in Krylov subspace methods

- ① Construction of $\mathcal{K}_m(A, b) = span\{b, Ab, \ldots, A^{m-1}b\}$
- ② Choice of x_m ∈ $\mathcal{K}_m(A, b)$

① Construction of $\mathcal{K}_m(A, b)$

- Numerical instability with the basis $\{b, Ab, A^2b, \ldots, A^{m-1}b\}$
- Need of orthogonal basis $v_i^T v_j = 0$, $i \neq j$

Arnoldi or Lanczos algorithm

$$\{v_1, v_2, \ldots, v_m\} = \mathcal{K}_m(A, b)$$

$$\begin{split} v_1 &= b/\|b\|_2 \\ \text{for} k &= 1, 2, \dots \\ H_{i,k} &= v_k^T A^T v_i, \quad i = 1, \dots, k \\ \hat{v}_{k+1} &= A v_k - \sum_{i=1}^k H_{i,k} v_i \\ H_{k+1,k} &= \|\hat{v}_{k+1}\|_2 \\ v_{k+1} &= \hat{v}_{k+1}/H_{k+1,k} \\ \text{end} \end{split}$$

Main steps in Krylov subspace methods

- ① Construction of $\mathcal{K}_m(A, b) = span\{b, Ab, \dots, A^{m-1}b\}$
- ② Choice of $x_m \in \mathcal{K}_m(A, b)$

② Choice of x_m ∈ $\mathcal{K}_m(A, b)$

- Minimize the residual $r_m = \|b Ax_m\|$
- Different norms
- GMRES, MINRES, FOM, CG, ...

Projections on Krylov subspaces

$$V_m^T A V_m = H_m \in \mathbb{R}^{m \times m}$$

•
$$V_m = \begin{bmatrix} v_1, v_2, \dots, v_m \end{bmatrix} \in \mathbb{R}^{N imes m}$$
 vectors of the basis $\mathcal{K}_m(A, b)$

- $V_m^T V_m = I \in \mathbb{R}^{m \times m}$
- *H_m* is upper Hessenberg

Projections on Krylov subspaces

$$AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T$$

 $e_{\alpha,\beta}(t; \mathbf{A})b \approx V_m e_{\alpha,\beta}(t; \mathbf{H}_m) V_m^T b = \|b\|_2 V_m e_{\alpha,\beta}(t; \mathbf{H}_m) e_1$

Main features:

- ✓ Only matrix-vector products
- \checkmark Exploit the sparsity of A
- ✓ Convergence in a finite number of steps
- \checkmark Recent applications to the Mittag–Leffler function¹⁰ ¹¹ ¹² ¹³

¹⁰R. Garrappa and M. Popolizio. "On the use of matrix functions for fractional partial differential equations". In: *Math. Comput. Simulation* 81.5 (2011).

¹¹I. Moret and P. Novati. "On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions". In: *SIAM J. Numer. Anal.* 49.5 (2011).

¹²I. Moret and M. Popolizio. "The restarted shift-and-invert Krylov method for matrix functions". In: *Numer Lin. Algebr.* (2012). in print.

¹³I. Moret. "A note on Krylov methods for fractional evolution problems". In: *Numer. Func. Anal. Opt.* 34.5 (2013), pp. 539–556.

$$\frac{\partial^{\alpha}}{\partial t^{\alpha}}u(t,x,y) = \nu\left(\frac{\partial^2}{\partial x^2}u(t,x,y) + \frac{\partial^2}{\partial y^2}u(t,x,y)\right)$$

 $\, \hookrightarrow \, \, \text{2D square domain} : \, \Omega = [0,1] \times [0,1]$

- \hookrightarrow Initial conditions : u(0, x, y) = x(1 x)y(1 y)
- \hookrightarrow Homogeneous boundary conditions : u(t, x, y) = 0, $(x, y) \in \partial \Omega$

Spatial discretization - Equispaced grid on Ω :

$$rac{d^lpha}{dt^lpha} U(t) = A U(t), \quad U(0) = U_0 \qquad \Longrightarrow \qquad U(t) = e_{lpha,1}(t;-A) U_0$$

Spatial mesh-grid $N_x = N_y = 40$ - Step-size $h = 2^{-4} = 0.625 \times 10^{-1}$

Comparison with the implicit Grünwald–Letnikov scheme (first order)

Spatial mesh-grid $N_x = N_y = 40$ - Step-size $h = 2^{-4} = 0.625 \times 10^{-1}$ Comparison with the implicit Grünwald–Letnikov scheme (first order)

Time of execution for $t \in [0, 1]$

EI = Exponential integrator

G-L = Grünwald-Letnikov

Numerical test: 1D time-fractional ADR equation

$$\frac{\partial^{\alpha}}{\partial t^{\alpha}}u + \varepsilon \frac{\partial}{\partial x}u = \nu \frac{\partial^2}{\partial x^2}u + \frac{1}{2}u(u - \frac{1}{2})(u - 1)$$

 $\ \, \hookrightarrow \ \, \text{1D domain}: \ \, \Omega = [0,1] \\ \ \ \, \hookrightarrow \ \, \text{Initial conditions}: \ \, u(0,x) = x(1-x)$

 \hookrightarrow Boundary conditions : u(t,0) = 0, u(t,1) = 0

Spatial mesh–grid $N_x = 80$

$$\frac{d^{\alpha}}{dt^{\alpha}}U(t) = AU(t) + F(t, U(t)), \quad U(0) = U_0$$

Numerical test: 1D time-fractional ADR equation

Spatial mesh-grid $N_x = 80$ - Step-size $h = 2^{-6} = 0.156 \times 10^{-1}$

Comparison with the implicit Grünwald–Letnikov scheme (first order)

Numerical test: 1D time-fractional ADR equation

Time of execution for $t \in [0, 1]$

EI = Exponential integratorG-L = Grünwald-Letnikov

Concluding remarks

• Exponential integrators seem to be promising for FPDEs

- Good stability properties
- Explicit schemes
- Competitive computation with respect to classical methods
- Higher accuracy for linear problems
- Open problems
 - Enhance the computation of the generalized ML functions
 - Efficient algorithms for the ML function with matrix arguments

Some references

- [1] R. Garrappa. "A family of Adams exponential integrators for fractional linear systems". In: *Comput. Math. Appl.* (2013), in print.
- [2] R. Garrappa. "Exponential integrators for time-fractional partial differential equations". In: *European Physical Journal* (2013), to appear.
- [3] R. Garrappa and M. Popolizio. "Evaluation of generalized Mittag–Leffler functions on the real line". In: *Adv. Comput. Math.* (2012), in print.
- [4] R. Garrappa and M. Popolizio. "Generalized exponential time differencing methods for fractional order problems". In: *Comput. Math. Appl.* 62.3 (2011), pp. 876–890.
- [5] R. Garrappa and M. Popolizio. "On accurate product integration rules for linear fractional differential equations". In: J. Comput. Appl. Math. 235.5 (2011), pp. 1085–1097.
- [6] R. Garrappa and M. Popolizio. "On the use of matrix functions for fractional partial differential equations". In: *Math. Comput. Simulation* 81.5 (2011).