International Symposium on Fractional PDEs: Theory, Numerics and Applications, June 3–5, 2013, Salve Regina University, 100 Ochre Point Avenue, Newport RI 02840

More Optimal Image Processing by Fractional Order Differentiation and Fractional Order Partial Differential Equations

Dali Chen, Dingyu Xue, <u>YangQuan Chen</u>

yqchen@ieee.org, ychen53@ucmerced.edu ME/EECS/SNRI/UCSolar MESA LAB, School of Engineering, University of California, Merced, USA xuedingyu@ise.neu.edu.cn, chendali@ise.neu.edu.cn Information Science and Engineering Northeastern University Shenyang 110004, P R China

Who cares?

Minimal dose biomedical imagingMore optimal

Strategies for Reducing Radiation Dose in CT (McCollough 2009) Radiol Clin North Am. 2009 January ; 47(1): 27–40. doi:10.1016/j.rcl.2008.10.006 http://www.eurekalert.org/pub_releases/2013-05/aaft-mdc050113.php

FC for what?

Better than the bestNew sciences

Need killing apps.

UCMERCED UC Merced

• The Research University of the Central Valley

MESALAB

- Central Located
 - Sacramento 2 hrs
 - San Fran. 2 hrs
 - Yosemite 1.5 hrs
 - LA -4 hrs
 - Surrounded by farmlands and sparsely populated areas

UCMERCED UC Merced

- Established 2005
- 1st research university in 21st century in USA.
- 6,000 Undergraduates
- 300 Grads (200+ Ph.D)

• Strong Undergraduate Research Presence (HSI, MSI)

UCMERCED

MESALAB

http://mechatronics.ucmerced.edu

- Mechatronics, Embedded Systems and Automation
 - Backup name: <u>Mechatronics, Energy Systems and</u> <u>Autonomy</u>
 - ASME DED, MESA TC. http://iel.ucdavis.edu/mesa/
 - 2013 MESA conference: Portland, OR http://www.asmeconferences.org/IDETC2013/

UCMERCED MESA Labs

• Director: Dr. YangQuan Chen

MESALAB

- 4 Ph.D. Students
- 1 MSc student
- 20+ Undergraduates
- 4 Visiting Ph.D. Students
- 2 Visiting Professors
- Short term visiting students
- 3 3D printers

UCMERCED

MESALAB

MESA Labs

UCMERCED

MESALAB

MESA Research Areas/Strengths

- Unmanned Aerial Systems and UAV-based Personal Remote Sensing (PRS)
- Cyber-Physical Systems (CPS)
- Modeling and Control of Renewable Energy Systems
- Mechatronics
- Applied Fractional Calculus (AFC)

Roadmap: More Optimal Image Processing

 $u_0 = u + n$; u_0 is the given image; n is the noise. Stochastic $\widehat{u} = \arg \max_{u} p(u|u_0) = \arg \max_{u} p(u)p(u_0|u)$ MAP $\min E[u|u_0] = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (u - u_0)^2 dx$ Variation PDE $-\Delta u + \lambda u = \lambda u_0$ Euler-Lagrange Equation $u_0 = u + \frac{-\Delta u}{\lambda} = u + \omega$ Detail information Wavelet

Introduction: Optimal Image Processing

 $u_0 = u + n$; u_0 is the given image; n is the noise. Stochastic $\widehat{u} = \arg\max_{u} p(u|u_0) = \arg\max_{u} p(u)p(u_0|u)$ MAP $\min E[u|u_0] = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (u - u_0)^2 dx$ Variation $-\Delta u + \lambda u = \lambda u_0$ Euler-Lagrange Equation PDE $u_0 = u + \frac{-\Delta u}{\lambda} = u + \omega$ Detail information Wavelet

Outline

Fractional Order Image Enhancement
Fractional Order Image Edge Detection
Fractional Order Image Denoising
Fractional Order Image Segmentation
Fractional Order Optical Flow

Fractional Order Image Enhancement

■ Aim of Image Enhancement^[1]:

- Enhance the contrast and detail information
- Easy for observation
- Easy for subsequent processing

Problem Description

Digital Fractional Order Savitzky-Golay Differentiator^[2]

$$\widehat{Y_i^{(\alpha)}} = X_i^{(\alpha)} B = W_i^{(\alpha)} Y$$

$$= \left[\frac{1}{\Gamma(1-\alpha)}i^{-\alpha}, \frac{1}{\Gamma(2-\alpha)}i^{1-\alpha}, \frac{\Gamma(3)}{\Gamma(3-\alpha)}i^{2-\alpha}, \dots, \frac{\Gamma(n+1)}{\Gamma(n+1-\alpha)}i^{n-\alpha}\right] (X^T X)^{-1} X^T Y,$$
(1)

Y: input signal; I: filtering window size; n: degree of polynomial function; i = 1,2,...,I.

$$X = \begin{bmatrix} 1 & 1^{1} & \dots & 1^{n} \\ 1 & 2^{1} & \dots & 2^{n} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & I^{1} & \dots & I^{n} \end{bmatrix}$$

Good at dealing with noisy signal

Extend to 2-Dimension^[3]

Assume I=2m+1 and

$$W_{m+1}^{(\alpha)} = [W(1), W(2), \dots, W(2m+1)]$$
⁽²⁾

 $\mathbf{T}_{\mathbf{T}}(\alpha)$

 $\tau \tau \tau (\alpha)$

Then, 2-D DFOSGD templates:

 $\tau \tau_{\tau}(\alpha)$

$W^{(\alpha)}$	
x + x + y	

				VV_{a}					VV 3										
0	0	0	0	0	0	0	0	0	0	0	0	W(1)	0	0	0	0	W(2m-1)	0	0
0				0	0				0	0		:		0	0				0
W(1)		W(m)		W(2m-1)	W(2m-1)		W(m)	:	W(1)	0		W(m)		0	0		W(m)		0
0		••••		0	0				0	0		:		0	0				0
0	0	0	0	0	0	0	0	0	0	0	0	W(2m-1)	0	0	0	0	W(1)	0	0

Extend to 2-Dimension

W(1)	0	0	0	0	W(2m-1)	0	0	0	0
0		…		0	0		••••		0
0		W(m)	:	0	0		W(m)		0
0				0	0		:		0
0	0	0	0	W(2m-1)	0	0	0	0	W(1)

 $W^{(\alpha)}$

 $W^{(\alpha)}_{\kappa}$

 $W^{(\alpha)}_{\varkappa}$

0	0	0	0	W(2m-1)	0	0	
0				0	0		
0		W(m)		0	0		
0		:		0	0		
W(1)	0	0	0	0	W(2m-1)	0	

$W^{(\alpha)}$	

1)	0	0	0	0	W(1)
	0				0
	0		W(m)		0
	0				0
	W(2m-1)	0	0	0	0

Calculate the ath order derivatives of G(x, y) in the different directions by Eq. (3).

G: input image;

$$\begin{aligned} G_{x^{+}}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{x^{+}}^{(\alpha)}(k,l)G(x-k,y-l), \\ G_{x^{-}}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{x^{-}}^{(\alpha)}(k,l)G(x-k,y-l), \\ G_{y^{+}}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{y^{+}}^{(\alpha)}(k,l)G(x-k,y-l), \\ G_{y^{-}}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{y^{-}}^{(\alpha)}(k,l)G(x-k,y-l), \\ G_{\searrow}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{\searrow}^{(\alpha)}(k,l)G(x-k,y-l), \\ G_{\swarrow}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{\swarrow}^{(\alpha)}(k,l)G(x-k,y-l), \\ G_{\swarrow}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{\swarrow}^{(\alpha)}(k,l)G(x-k,y-l), \\ G_{\swarrow}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{\swarrow}^{(\alpha)}(k,l)G(x-k,y-l), \\ G_{\swarrow}^{(\alpha)}(x,y) &= \sum_{k=-m}^{m} \sum_{l=-m}^{m} W_{\swarrow}^{(\alpha)}(k,l)G(x-k,y-l). \end{aligned}$$

(3)

Image enhancing algorithm flow

■ Step 1: Calculate:

 $G_d^{(\alpha)}(x,y), \ d \in \Omega, \ \Omega := \{x^+, y^+, x^-, y^-, \searrow, \nwarrow, \nearrow, \swarrow\}$

Step2: Calculate:

 $G^{(\alpha)}(x,y) = Sat(\max\{G_d^{(\alpha)}(x,y) | d \in \Omega\}),$

Enhanced image

$$Sat(u) = \begin{cases} 0, & u < 0 \\ u, & u \in [0, L], \\ L, & u > L \end{cases}$$

Experiments

Lake Tahoe

http://earthobservatory.nasa.gov/

Experiments

Moon

http://bf-astro.com/

Orion Nebula

How to Choose Fractional Order?

Unsupervised optimization algorithm

Let: $\Omega^{(\alpha)} := \{(x, y) | G^{(\alpha)}(x, y) = L\}$ $N^{(\alpha)}$ is the size of $\Omega^{(\alpha)}$ \bullet $N^{(\alpha)}$ increases when a increases. Image is under-enhanced when N^(a) is small. Image is over-enhanced when N^(a) is large. $M(x) = \begin{cases} \left(\frac{x}{5}\right)^2, & x \in [0, 25) \\ 50 - \left(\frac{x - 50}{5}\right)^2, & x \in [25, 150) \\ 50, & x \in [50, 150), \\ \frac{250 - x}{2}, & x \in [150, 250) \\ 0, & x \in [250 - 200] \end{cases}$ $\widehat{\alpha} = \arg\min_{\alpha} J(\alpha)$ (4)

 $J(\alpha) = \sum_{(x,y)\in\Omega^{(\alpha)}} |G^{(\alpha)}(x,y) - G(x,y) - M(avg)| / N^{(\alpha)}$

Experiments

 $\alpha = 0.32$

 $\alpha = 0.28$

Conclusion

> The digital fractional order Savitzky-Golay differentiator is proposed, see [2]; The fractional order image enhancing method is proposed, see [3]; > An unsupervised optimization algorithm is proposed for choosing the fractional order, see [3];

Fractional Order Image Edge Detection

- First-Order Edge Detector: Roberts, Prewitt and Sobel^[1]
 high false reject rate (FRR)
- Second-Order Edge Detector: Laplacian of Gaussian^[1]
 - high false accept rate (FAR)
- Fractional-Order Edge Detector^[4]
 - high density noise

Motivation

- Fractional differentialbased approach
- Robust image edge detection
- Accurate
- Immunity to noise

Outlines

- Implementation
- Analysis
 - Frequency-domain analysis
 - Parameter analysis
- Experiments
 - Evaluation method
 - Comparison analysis
 - Robustness analysis

Fractional differential mask for edge detection

Riemann-Liouville fractional integral^[5]:

$${}_{a}I_{t}^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)}\int_{a}^{t}(t-\tau)^{\alpha-1}f(\tau)d\tau, \quad t \in [a,b]$$

Rewrite (1) by convolution formula,

$${}_aI_t^{1-\alpha}f(t) = \frac{t^{-\alpha}*f(t)}{\Gamma(1-\alpha)} = h(t,\alpha)*f(t)$$
(5)

Fractional differential mask for edge detection

Riemann-Liouville fractional derivative:

$${}_{a}D_{t}^{\alpha}f(t) = \frac{d}{dt} {}_{a}I_{t}^{1-\alpha}f(t) = \frac{d}{dt} \left(\begin{array}{c} h(t,\alpha) * f(t) \right)$$

$$= h'(t,\alpha) * f(t).$$
Expand to 2-D:
$$\begin{array}{c} h(t,\alpha) = \frac{t^{-\alpha}}{\Gamma(1-\alpha)} \\ t \to \sqrt{x^{2}+y^{2}} \end{array}$$
(6)
$$\begin{array}{c} (6) \\ (6) \\ (7) \\ (7) \\ (7) \end{array}$$

$$h(x, y, \alpha) = \frac{(x^2 + y^2)^{-\alpha/2}}{\Gamma(1 - \alpha)}$$

Fractional differential mask for edge detection

2-D formulas:

$${}_{a}D_{x}^{\alpha}f(x,y) = \frac{\partial h(x,y,\alpha)}{\partial x} * f(x,y)$$

= $H_{x}(x,y,\alpha) * f(x,y),$

Fractional-order differential mask (FDM)

$$aD_{y}^{\alpha}f(x,y) = \frac{\partial h(x,y,\alpha)}{\partial y} * f(x,y)$$
$$= H_{y}(x,y,\alpha) * f(x,y).$$

(10)

(11)

Fractional differential mask for edge detection

FDM equations:

$$H_x(x,y,\alpha) = -\frac{\alpha}{\Gamma(1-\alpha)} x \left(x^2 + y^2\right)^{-\alpha/2-1},$$
(12)

$$H_y(x,y,\alpha) = -\frac{\alpha}{\Gamma(1-\alpha)} y \left(x^2 + y^2\right)^{-\alpha/2-1}.$$
 (13)

Fractional differential mask for edge detection

Discrete FDM equations:

$$H_x(x_M, y_N, \alpha) = -\frac{\alpha x_M}{\Gamma(1-\alpha)} \left(x_M^2 + y_N^2 \right)^{-\alpha/2-1}, \qquad (14)$$

$$H_y(x_M, y_N, \alpha) = -\frac{\alpha y_N}{\Gamma(1-\alpha)} \left(x_M^2 + y_N^2 \right)^{-\alpha/2-1}.$$
 (15)

Here $x_M = -M, -M + 1, ..., M$ $y_N = -N, -N + 1, ..., N$ $H_x(0, 0, \alpha) = 0$, and $H_y(0, 0, \alpha) = 0$

Fractional differential mask for edge detection

• When $\alpha = 0.5$, 5×5 FDM:

(0.0419	0.0377	0	-0.0377	-0.0419	
	0.0755	0.1186	0	-0.1186	-0.0755	
	0.0997	0.2821	0	-0.2821	-0.0997	
	0.0755	0.1186	0	-0.1186	-0.0755	
Ĺ	0.0419	0.0377	0	-0.0377	-0.0419	

0.04190.04190.07550.09970.07550.03770.11860.28210.11860.03770 0 0 0 0 -0.1186-0.0377-0.1186-0.2821-0.0377-0.0419-0.0755-0.0997-0.0755-0.0419

Image edge detection algorithm flow

Step 1: Calculate:

 $M(x,y) = \sqrt{(D_x^{\alpha} f(x,y))^2 + (D_y^{\alpha} f(x,y))^2}$

 $\varphi(x,y) = \tan^{-1}(D_y^{\alpha}f(x,y)/D_x^{\alpha}f(x,y))$

- Step2: Find an edge direction.
- Step3: Non-maximum suppression.
- Step4: Hysteresis Thresholding.
- Step5: Link edge.

Image edge detection algorithm flow

```
function eout=ch_fedge(a,alpha,width)
if ~isa(a,'double') && ~isa(a,'single'), a = im2single(a);end
[m,n] = size(a);e = false(m,n);PercentOfPixelsNotEdges = .7;
ThresholdRatio = .4; chw=-alpha/gamma(1-alpha);
[x,y]=meshgrid(-width:width,-width:width);
dgau2D=x.*(x.*x+y.*y).^{(-alpha/2-1)*chw};
dgau2D(width+1,width+1)=0;
ax = imfilter(a, dgau2D, 'conv', 'replicate');
ay = imfilter(a, dgau2D', 'conv', 'replicate');
mag = sqrt((ax.*ax) + (ay.*ay));magmax = max(mag(:));
if magmax>0,mag = mag / magmax;end counts=imhist(mag, 64);
highThresh = find(cumsum(counts) > ...
PercentOfPixelsNotEdges*m*n,1,'first') / 64;
lowThresh = ThresholdRatio*highThresh;
thresh = [lowThresh highThresh];idxStrong = [];
```

Image edge detection algorithm flow

```
for dir = 1:4
```

```
idxLocalMax = cannyFindLocalMaxima(dir,ax,ay,mag);
idxWeak = idxLocalMax(mag(idxLocalMax) > lowThresh);
e(idxWeak)=1;
idxStrong = [idxStrong;...
idxWeak(mag(idxWeak) > highThresh)];
end
if ~isempty(idxStrong)
rstrong = rem(idxStrong-1, m)+1;
cstrong = floor((idxStrong-1)/m)+1;
```

```
e = bwselect(e, cstrong, rstrong, 8);
```

```
e = bwmorph(e, 'thin', 1);
```

end

eout = e;
Analysis Parameter analysis

> M = 5 $> \alpha : 0 \longrightarrow 1$

Original image

Analysis Parameter analysis

 $\succ \alpha = 0.9$ $\gg M : 2 \longrightarrow 40$

Smoothing Enhancing

Analysis *Parameter and noise immunity*

 $\overrightarrow{\succ} M = 4$ $\overrightarrow{} \alpha : 1 \longrightarrow 0$

Noisy image: Gaussian noise with zero-mean and variance $\sigma^2 = 0.01$

➢ Noise immunity
➢ Enhancing

Analysis *Parameter and noise immunity*

M = 2

M = 4

M = 3

 $\Rightarrow \alpha = 0.5$ > Noise immunity > > Enhancing >

Analysis *Conclusion*

Experiments *Evaluation method*

False Reject Rate (FRR): $\mu_{FRR} = \frac{\Psi(A - A \cap B)}{\Psi(A)}$

False Accept Rate (FAR): $\mu_{FAR} = \frac{\Psi(\overline{A} \cap B)}{\Psi(B)}$ ✓ $\Psi(X)$ denotes the number of elements in *X* ✓ μ_{FRR} → μ_{FAR} → accuracy *×*

✓ φ is the typical thinning operator [6] ✓ Single edge: $\mu_{SPD} = 1$

Single-Pixel-Detecting (SPD):

 $\mu_{SPD} = rac{\Psi(arphi(B))}{\Psi(B)}$

Experiments: Comparison analysis

(a)Multi-scale linear edge image

(e) LoG edge detector

(b) Robert edge detector

(f) Canny edge detector

(c) Prewitt edge

(g) Oustaloup edge

detector

detector

(d) Sobel edge detector

(h) Proposed edge detector

Conclusion: 1.Better than the Roberts, Prewitt,Sobel, LoG and Canny edge detectors; 2.Similar with the Oustaloup edge detector.

Experiments: Comparison analysis

Conclusion: 1.Better than the Roberts, Prewitt,Sobel and LoG edge detectors; 2.Similar with the Canny and Oustaloup edge detector.

Experiments: Comparison analysis

 Table 1: Quantitative comparison among the proposed method and six typical methods

	Lin	ear	Nonlinear			
Method	μ_{FR}	μ_{SPD}	μ_{FR}	μ_{SPD}		
Roberts	0.0852(4)	0.9844(6)	0.1246(7)	0.8214(7)		
Prewitt	0.0887(6)	0.9892(3)	0.0622(5)	0.9966(4)		
Sobel	0.0882(5)	0.9887(4)	0.0416(4)	0.9788(6)		
m LoG	0.1348(7)	0.9850(5)	0.1041(6)	0.9956(5)		
Canny	0.0226(3)	0.9949(2)	0.0052(3)	0.9995(1)		
Oustaloup	0.0173(2)	0.9991(1)	0.0034(2)	0.9986(3)		
Proposed	0.0135(1)	0.9952(2)	0.0033(1)	0.9988(2)		

 $\mu_{FR} = \mu_{FRR} + \mu_{FAR}$

Experiments *Robustness analysis*

X Axis
Noisy image
Signal To Noise Rate (SNR)
Y Axis
False rate (FR)

Red curve
Better than the other
detectors

Fig. FR comparison among the seven edge detectors for the multi-scale linear edge noisy images with different SNRs

Experiments *Robustness analysis*

X Axis
 Noisy image
 Signal To Noise Rate (SNR)
 Y Axis
 False rate (FR)

► Robustness is better.

Fig. FR comparison among the seven edge detectors for the nonlinear edge noisy images with different SNRs

Conclusion

A new fractional differential-based method is proposed for robust image edge detection, see [6];
Frequency domain analysis;
Good edge-detecting capability and robustness;
Fast, real-time systems. Fractional Order Image Denoising Problem Description

Outline

- Majorization-Minimization (MM) Method
- Fractional Order Total Variation(TV)-L2 Model
- Majorization of $TV_p^{\alpha}(u)$
- Numerical Scheme
- Experiments

Why MM Method ?

■ Continuous Domain^[13-16]:

- Newton's Method
- Duality Theory
- Euler-Lagrange Equation
- FTVd Method
- Discrete Domain^[17-18]
 Majorization-Minimization (MM) Method;

Fractional Order TV-L2 Model

 $\widehat{u} = \arg\min_{u} \left\{ E(u) = \|f - u\|_2^2 + \lambda \operatorname{TV}_p^{\alpha}(u) \right\}$ (16)**Regularization term** Data term λ : regularization parameter; $\mathrm{TV}_p^{\alpha}(u) = \sum \|D^{\alpha}u(n)\|_p$ D_{h}^{α} : horizontal fractional order derivative ; $n \in \Omega$ D_v^{lpha} : vertical fractional order derivative ; $\|\mathbf{D}^{\alpha}u(n)\|_{1} = |\mathbf{D}^{\alpha}_{h}u(n)| + |\mathbf{D}^{\alpha}_{v}u(n)|$ f: Noisy image; u: Clean image; $\|\mathbf{D}^{\alpha}u(n)\|_{2} = \sqrt{(\mathbf{D}^{\alpha}_{h}u(n))^{2} + (\mathbf{D}^{\alpha}_{v}u(n))^{2}}$ $\|u\|_{\nu}$: ν -norm;

Majorization of
$$TV_p^{\alpha}(u)$$

Assume

 $Q_{(k,1)}(u) = \frac{1}{2} \operatorname{TV}_{1}^{\alpha}(u_{k}) + \frac{1}{2} u^{T} (D^{\alpha})^{T} V_{(k,1)}^{-1} D^{\alpha} u = \operatorname{C}_{1}^{\alpha}(u_{k}) + \frac{1}{2} u^{T} (D^{\alpha})^{T} V_{(k,1)}^{-1} D^{\alpha} u,$ $D^{\alpha} = [(D_{h}^{\alpha})^{T}, (D_{v}^{\alpha})^{T}]^{T}$ $V_{(k,1)} = \operatorname{diag}(\Lambda_{k}^{h}, \Lambda_{k}^{v})$ $\Lambda_{k}^{v} = \operatorname{diag}(|D_{v}^{\alpha}u_{k}|)$ $\Lambda_{k}^{h} = \operatorname{diag}(|D_{h}^{\alpha}u_{k}|)$ $Q_{(k,1)}(u) \text{ is the majorization of } \operatorname{TV}_{1}^{\alpha}(u)$

Majorization of
$$TV_p^{\alpha}(u)$$

Assume

$$Q_{(k,2)}(u) = \mathrm{TV}_{2}^{\alpha}(u_{k}) + \frac{1}{2}u^{T}(\mathrm{D}^{\alpha})^{T}V_{(k,2)}^{-1}\mathrm{D}^{\alpha}u = \mathrm{C}_{2}^{\alpha}(u_{k}) + \frac{1}{2}u^{T}(\mathrm{D}^{\alpha})^{T}V_{(k,2)}^{-1}\mathrm{D}^{\alpha}u,$$

$$V_{(k,2)} = \mathrm{diag}(v_{k}, v_{k})$$

$$Q_{(k,2)}(u) \ge \mathrm{TV}_{2}^{\alpha}(u)$$

$$Q_{(k,2)}(u_{k}) = \mathrm{TV}_{2}^{\alpha}(u_{k})$$

$$Q_{(k,2)}(u_{k}) = \mathrm{TV}_{2}^{\alpha}(u_{k})$$

 $\overline{Q}_{(k,2)}(u)$ is the majorization of $\mathrm{TV}_2^lpha(u)$

Majorization of
$$TV_p^{\alpha}(u)$$

The majorization of $\operatorname{TV}_{p}^{\alpha}(u)$ is $Q_{(k,p)}(u) = \operatorname{C}_{p}^{\alpha}(u_{k}) + \frac{1}{2}u^{T}(\operatorname{D}^{\alpha})^{T}V_{(k,p)}^{-1}\operatorname{D}^{\alpha}u.$ So, the majorization of the fractional order TV model is $H_{(k,p)}(u) = \|f - u\|_{2}^{2} + \frac{1}{2}u^{T}(\operatorname{D}^{\alpha})^{T}V_{(k,p)}^{-1}\operatorname{D}^{\alpha}u + \operatorname{C}_{p}^{\alpha}(u_{k}).$ constant

Thus, the *u* can be estimated by solving a sequence of optimization problems

 $u_{k+1} = \arg\min_{u} \left\{ \|f - u\|_{2}^{2} + \frac{\lambda}{2} u^{T} (\mathbf{D}^{\alpha})^{T} V_{(k,p)}^{-1} \mathbf{D}^{\alpha} u \right\}.$

It leads to a linear system: $(I + \lambda (D^{\alpha})^T V_{(k,p)}^{-1} D^{\alpha}) u_{k+1} = f,$

Numerical Scheme

- 1. Let the input image be f and set k = 0 and $u_k = f$. Initialize $K_{\sigma'}, \sigma, M$, N and iteration number K_{iter} .
- 2. Set $u_k = K_{\sigma'} * u_k$ and $\lambda_k^p = MN\sigma^2/2TV_p^{\alpha}(u_k)$.
- 3. Compute $A_k = (I + \lambda_k^p (\mathbf{D}^{\alpha})^T V_{(k,p)}^{-1} \mathbf{D}^{\alpha}).$
- 4. Compute u_{k+1} by using the conjugate gradient algorithm to solve the linear system $A_k u_{k+1} = f$.
- 5. If $k = K_{iter}$, stop; else, set k = k + 1 and go to step 2.

Experiments: *Restraint of block effect*

Conclusion: the proposed fractional order TV-L2 model can reduce blocky effect.

Experiments: Analysis of denoising performance *PSNR: peak signal to noise ratio*

Table 1: PSNR quantitative comparison among five denoising models								
Image	SD	IP-M	F-O-PDE	IF-O-PDE	ROF	TV_2^{lpha} - L^2		
Barbara	10	31.2427	29.3776	29.3777	31.0871	31.3792		
	20	26.6231	24.8155	24.8156	26.8212	26.9798		
	30	24.4496	22.9267	22.9273	24.7415	24.8166		
Lena	10	33.6393	31.5440	31.5442	33.8378	34.7437		
	20	29.7665	27.8080	27.8098	30.4101	31.4387		
	30	27.4437	26.0883	26.1019	28.5889	29.6095		
Peppers	10	33.6967	31.8199	31.8205	33.8715	33.9328		
	20	30.0275	28.0437	28.0457	30.1768	30.4965		
	30	27.4982	26.1613	26.1694	28.2689	28.8305		

IP-M: Improved Perona and Malik model [7]; F-O-PDE: fourth order PDE model [8]; IF-O-PDE: improved fourth order PDE model[19]; ROF model [9]; proposed fractional order TV2-L2 model.

Conclusion: the denoising performance proposed fractional order TV_2 -L2 model is better than the other four methods.

Experiments: Analysis of denoising performance

Table 1: PSNR quantitative comparison between TV_1^{α} -L² and TV_2^{α} -L² model

	Barbara			Lena		Peppers			Goldhill			
Model	10	20	30	10	20	30	10	20	30	10	20	30
$TV_{2}^{1.6}$ -L ²	31.4118	26.8263	24.5162	34.4373	31.1986	29.5400	33.8179	30.1648	28.8539	32.1030	28.8404	27.7313
$TV_1^{1.6}$ -L ²	31.4057	26.7565	23.8417	32.6776	27.1440	25.0362	32.4445	26.9766	24.2010	31.7602	26.8850	25.3306

Conclusion: the denoising performance proposed fractional order TV_2 -L2 model is better than fractional order TV_1 -L2 model.

Experiments: Analysis of denoising performance

Relation between the iteration number and PSNR value

Conclusion: the method is stable after 15 iterations.

Experiments:

Lung nodule segmentation experiment

Partial enlarged view of the segmented result

Noisy lung nodule CT image

 $\mathrm{TV}_2^1 - L^2$

 $TV_2^{1.5} - L^2$

Conclusion: 1.fractional order TV-L2 denoising method is helpful for improving the accuracy of the post-processing technologies in the lung nodule CT image segmentation. 2. the detected edge of $TV_2^{1.5} - L^2$ is more accurate than that of $TV_2^1 - L^2$

Experiments:

Cardiac muscular segmentation experiment

Noisy cardiac muscular PET image

Conclusion: 1. fractional order TV-L2 denoising method is helpful for improving the accuracy of the post-processing technologies in the cardiac muscular PET image segmentation. 2. the detected edge of $TV_2^{1.5} - L^2$ is more accurate than that of $TV_2^1 - L^2$

Conclusion

Two fractional order TV-L2 models are constructed, see [12]; >Majorization-minimization algorithm was used to solve fractional TV optimization problem, see [12]; \succ Majorizors of two fractional order TV regularizers are obtained in one uniform formula, see [12]; > Avoid the blocky effect.

Fractional Order Level Set Model Introduction

What is the Level Set Method?

LSM is a numerical technique for tracking interfaces and shapes.

What is Level Set Good for? [20-27]

- Image Segmentation
- Tracking
- Computer Graphics
- Computational Geometry
- Computational fluid dynamics

Fractional Order Level Set Model Problem Description

 $\min \overline{E(f_1(x), f_2(x), \phi)} = \lambda_1 \int \left(\int_{\Omega} K_{\sigma}(x - y) |I(y) - f_1(x)|^2 H(\phi(y)) dy \right) dx$ + $\lambda_2 \int (\int_{\Omega} K_{\sigma}(x-y) |I(y) - f_1(x)|^2 (1 - H(\phi(y))) dy) dx$ $\min \int_{\Omega} (\lambda_1 |I - c_1|^2 H(\phi))$ + $\mu \int_{\Omega} \delta(\phi) [D^{\alpha}\phi] d\Omega$ $+\lambda_2|I-c_2|^2(1-H(\phi))+\mu\delta(\phi)|D^{\alpha}\phi|)d\Omega$ $\min E(f_1(x), f_2(x), \phi) = \lambda_1 \int \left(\int_{\Omega} K_{\sigma}(x-y) |I(y) - f_1(x)|^2 H(\phi(y)) dy \right) dx$ $\min \int_{\Omega} (\lambda_1 |I - c_1|^2 H(\phi))$ $1 + \lambda_2 \int (\int_{\Omega} K_{\sigma}(x-y) |I(y) - f_1(x)|^2 (1 - H(\phi(y))) dy) dx$ $+\lambda_2 |I - c_2|^2 (1 - H(\phi)) + \mu \delta(\phi) |D\phi|) d\Omega$ $+ \mu \int_{\Omega} \delta(\phi) [D\phi] d\Omega$ C-V Model^[20] 2001 RSF Model^[21] 2008

Outline

- C-V Model
- Fractional Order C-V Model
- RSF (Region-Scalable Fitting) Model
- Fractional Order RSF Model
- Numerical Algorithm
- Experiments

Model description: $\min \left[(\lambda_1 | I - c_1 |^2 H(\phi) + \lambda_2 | I - c_2 |^2 (1 - H(\phi)) + \mu \delta(\phi) | D\phi |) d\Omega \right]$ $c_1(\phi) = \frac{\int_{\Omega} I(x,y) H(\phi(x,y)) dx dy}{\int_{\Omega} H(\phi(x,y)) dx dy} \quad (17) \quad H(\phi) = \begin{cases} 1, & \phi \ge 0\\ 0, & \phi < 0 \end{cases}$ $c_{2}(\phi) = \frac{\int_{\Omega} I(x,y)(1 - H(\phi(x,y)))dxdy}{\int_{\Omega} (1 - H(\phi(x,y)))dxdy}$ (18) λ_1 and λ_2 are positive constants

将 E(C) 改成 E(Ø)

C-V Model

$$\phi(x, y, t) = \begin{cases} D(x, y, t), & (x, y) \in \Omega_1 \\ 0, & (x, y) \in C \\ -D(x, y, t), & (x, y) \in \Omega_2 \end{cases}$$

D(x, y, t) is the Euclidean distance from point (x, y) to curve C at time t.

 Ω_1 is inside C

 Ω_2 is outside C

 ϕ is the level set.

Fractional Order C-V Model

Model description: $\min \int_{\Omega} (\lambda_1 |I - c_1|^2 H(\phi) + \lambda_2 |I - c_2|^2 (1 - H(\phi)) + \mu \delta(\phi) |D^{\alpha} \phi|) d\Omega$

Euler-Lagrange Equation: $\frac{\partial \phi}{\partial t} = \delta(\phi) \left[\mu div^{\alpha} \left(\frac{D^{\alpha \phi}}{|D^{\alpha} \phi|} \right) - \lambda_1 (I - c_1)^2 + \lambda_2 (I - c_2)^2 \right]$ (19)

RSF Model^[21]

Model description:Region-Scalable Fitting Energymin
$$E(f_1(x), f_2(x), \phi)$$
= $\lambda_1 \int (\int_{\Omega} K_{\sigma}(x-y) |I(y) - f_1(x)|^2 H(\phi(y)) dy) dx$ + $\lambda_2 \int (\int_{\Omega} K_{\sigma}(x-y) |I(y) - f_1(x)|^2 (1 - H(\phi(y))) dy) dx$ + $\mu \int_{\Omega} \delta(\phi) |D\phi| d\Omega$ Curve Length

$$K_{\sigma}(x-y) = \frac{1}{(2\pi)^{n/2}\sigma^n} \exp(-\frac{|x-y|^2}{2\sigma^2})$$

I(y) denotes the intensity of the point y in a neighborhood of x f_1 and f_2 are two values that approximate image intensities in Ω_1 and Ω_2

Fractional Order RSF Model

Model description:

$$\min E(f_1(x), f_2(x), \phi) = \lambda_1 \int (\int_{\Omega} K_{\sigma}(x-y) |I(y) - f_1(x)|^2 H(\phi(y)) dy) dx$$

+ $\lambda_2 \int (\int_{\Omega} K_{\sigma}(x-y) |I(y) - f_1(x)|^2 (1 - H(\phi(y))) dy) dx$
+ $\mu \int_{\Omega} \delta(\phi) |D^{\alpha}\phi| d\Omega$

$$\frac{\partial \phi}{\partial t} = \delta(\phi) \left[\mu div^{\alpha} \left(\frac{D^{\alpha \phi}}{|D^{\alpha} \phi|} \right) - \lambda_1 e_1 + \lambda_2 e_2 \right] \quad (20)$$
$$e_i(x) = \int K_{\sigma}(y - x) |I(x) - f_i(y)|^2 dy, \quad i = 1, 2$$
Principal step of algorithm

The principal steps of the algorithm are:

- 1. Initialize ϕ^0 by ϕ_0 , n = 0;
- 2. Fractional- Order C-V Model: Compute $c_1(\phi^n)$ and $c_2(\phi^n)$ by (17) and (18); Fractional- Order RSF Model: Compute $f_1(x), f_2(y)$ and $K_{\sigma}(x-y)$;
- 3. Solve the Euler-Lagrange Equation in ϕ from (19) or (20), to obtain ϕ^{n+1} ;
- 4. Reinitialize ϕ locally to the signed distance function to the curve;
- 5. Check whether the solution is stationary. If not, n = n + 1 and repeat.

Intensity Homogeneity PET Cardiac Muscular Segmentation Experiment

Conclusion: For intensity homogeneity PET cardiac muscular image, the detected edge of fractional order CV model is more accurate than that of typical CV model.

Intensity Homogeneity PET Cardiac Muscular Segmentation Experiment

Conclusion: For intensity homogeneity PET cardiac muscular image, the detected edge of fractional order RSF model is more accurate than that of both fractional order and typical CV models.

Intensity Homogeneity PET Cardiac Muscular Segmentation Demo

Fractional Order Level Set Model

Demo: Intensity homogeneity PET cardiac muscular image

YangQuan Chen, Dingyu Xue, Dali Chen, Congrong Zhang

yangquan.chen@ucmerced.edu yqchen@ieee.org MESA(Mechatronics, Embedded Systems and Automation)LAB School of Engineering, University of California, Merced, 5200 N Lake Road, Merced, CA 95343, USA

xuedingyu@ise.neu.edu.cn, chendali@ise.neu.edu.cn Information Science and Engineering Northeastern University Shenyang 110004, P R China

Intensity Inhomogeneity PET Cardiac Muscular Segmentation Experiment

Cardiac Muscular PET Image

Original PET Image

Pseudo-Color Image

\$7

Segmented Result

Fractional Order C-V Model lpha=1.8

Conclusion: For intensity inhomogeneity PET cardiac muscular image, both fractional order and typical CV models are not able to get satisfactory result.

C-V Model

Intensity Inhomogeneity PET Cardiac Muscular Segmentation Experiment

Original PET Image

Fractional Order C-V Model $\alpha=1.8$

RSF Model

Fractional Order RSF Model $\alpha=1.8$

Conclusion: For intensity inhomogeneity PET cardiac muscular image, the detected edge of fractional order RSF model is more accurate than that of both fractional order and typical CV models. Intensity Inhomogeneity PET Cardiac Muscular Segmentation Demo

Fractional Order Level Set Model

Demo: Intensity inhomogeneity PET cardiac muscular image

YangQuan Chen, Dingyu Xue, Dali Chen, Congrong Zhang

yangquan.chen@ucmerced.edu yqchen@ieee.org MESA(Mechatronics, Embedded Systems and Automation)LAB School of Engineering, University of California, Merced, 5200 N Lake Road, Merced, CA 95343, USA

xuedingyu@ise.neu.edu.cn, chendali@ise.neu.edu.cn Information Science and Engineering Northeastern University Shenyang 110004, P R China

Conclusion

Two fractional-order image segmentation model are proposed;
The effective numerical algorithms are proposed;
Improved accuracy;
Provide a new tool for image segmentation.

Fractional Order Optical Flow *Introduction*

What is the Optical Flow Problem?

Input: two or more frames of an image sequence; Output: displacement field between two consecutive frames, optical flow.

What is Optical Flow Good for? [28-35]

- Robot navigation
- Tracking
- Action recognition
- Video compression
- Stereo reconstruction
- Medical image registration

Horn-Schunck

Outline

Fractional-Order Optical Flow Model Numerical Algorithm – Euler–Lagrange Equation - Fractional-Order Differential Operator - Discrete Euler-Lagrange Equations – Structure of the Linear System

- Multi-scale Approach
- Experiments

Outline

- Improved Fractional-Order Optical Flow Model
 - Discrete Formulation
 - Saddle-Point Formulation
- Numerical Scheme
- Experiments

Fractional-Order Variational Optical Flow Model^[37]

Model description: data term regularization term $\min_{w} \int_{\Omega} ((I_{x}u + I_{y}v + I_{t})^{2} + \lambda(|D^{\alpha}u|^{2} + |D^{\alpha}v|^{2}))d\Omega$

$$\begin{split} &I_0(x, y, t) \text{ is the given image;} \\ &(x, y)^T \text{ denotes the location with a rectangular image domain } \Omega \in R; \\ &\boldsymbol{w}(x, y) := (u(x, y), v(x, y), 1)^\top \text{ is the optic flow field;} \\ &I_x, I_y \text{ and } I_t \text{ are the gradients of image sequence } I \text{ in } x, y \text{ and } t; \\ &D^\alpha := (D_x^\alpha, D_y^\alpha)^\top; \\ &|D^\alpha u| = \sqrt{(D_x^\alpha u)^2 + (D_y^\alpha u)^2}. \end{split}$$

Euler–Lagrange Equation

Consider an energy function J(u, v) defined by

$$J(u,v) = \int_{\Omega} ((I_x u + I_y v + I_t)^2 + \lambda (|D_x^{\alpha} u|^2 + |D_y^{\alpha} u|^2 + |D_x^{\alpha} v|^2 + |D_y^{\alpha} v|^2)) d\Omega.$$

Assume that $u^*(x,y)$ and $v^*(x,y)$ are the desired functions. Take any test functions $\eta(x,y) \in C^{\infty}(\Omega)$ and $\zeta(x,y) \in C^{\infty}(\Omega)$ and $\epsilon \in R$. We have

$$egin{aligned} u(x,y) &= u^*(x,y) + \epsilon\eta(x,y), \ v(x,y) &= v^*(x,y) + \epsilon\zeta(x,y). \end{aligned}$$

$$D_x^{\alpha}u(x,y) = D_x^{\alpha}u^*(x,y) + \epsilon D_x^{\alpha}\eta(x,y),$$

$$D_y^{\alpha}u(x,y) = D_y^{\alpha}u^*(x,y) + \epsilon D_y^{\alpha}\eta(x,y),$$

$$D_x^{\alpha}v(x,y) = D_x^{\alpha}v^*(x,y) + \epsilon D_x^{\alpha}\zeta(x,y),$$

$$D_y^{\alpha}v(x,y) = D_y^{\alpha}v^*(x,y) + \epsilon D_y^{\alpha}\zeta(x,y).$$

Euler–Lagrange Equation

$$J(\epsilon) = \int_{\Omega} ((I_x u^* + \epsilon I_x \eta + I_y v^* + \epsilon I_y \zeta + I_t)^2 + \lambda(|D_x^{\alpha} u^* + \epsilon D_x^{\alpha} \eta|^2 + |D_y^{\alpha} u^* + \epsilon D_y^{\alpha} \eta|^2 + |D_x^{\alpha} v^* + \epsilon D_x^{\alpha} \zeta|^2 + |D_y^{\alpha} v^* + \epsilon D_y^{\alpha} \zeta|^2))d\Omega.$$
Differentiating (21) with respect to ϵ , we obtain

$$J'(0) = \int_{\Omega} (\eta(MI_x + \lambda(D_x^{\alpha*} D_x^{\alpha} u^* + D_y^{\alpha*} D_y^{\alpha} u^*)) + \zeta(MI_y + \lambda(D_x^{\alpha*} D_x^{\alpha} v^* + D_y^{\alpha*} D_y^{\alpha} v^*)))d\Omega.$$

$$(I_x u^* + I_y v^* + I_t)I_x + \lambda(D_x^{\alpha*} D_x^{\alpha} u^* + D_y^{\alpha*} D_y^{\alpha} v^*) = 0, \\ (I_x u^* + I_y v^* + I_t)I_y + \lambda(D_x^{\alpha*} D_x^{\alpha} v^* + D_y^{\alpha*} D_y^{\alpha} v^*) = 0.$$
D^{\alpha^*} is the right Riemann-Liouville fractional derivative

(21)

Fractional-Order Differential Operator

Let:
$$w_0^{(\alpha)} = 1$$
, $w_k^{(\alpha)} = (1 - \frac{\alpha+1}{k}) w_{k-1}^{(\alpha)}$, $k = 1, 2, \dots$

We have:
$$D_x^{\alpha*} D_x^{\alpha} u(i,j) = \sum_{k=-\infty}^0 w_{|k|}^{(\alpha)} u(i-k,j) + \sum_{k=0}^\infty w_k^{(\alpha)} u(i-k,j).$$

Since
$$\sum_{k=0}^{\infty} w_k^{(\alpha)} = 0$$
, the equation can be rewritten by

$$D_x^{\alpha*} D_x^{\alpha} u(i,j) = \sum_{k=-\infty}^{-1} w_{|k|}^{(\alpha)} \nabla u(i-k,j) + \sum_{k=1}^{\infty} w_k^{(\alpha)} \nabla u(i-k,j),$$
(22)

where $\nabla u(i-k,j) = u(i-k,j) - u(i,j)$.

Fractional-Order Differential Operator

For application, we approximate (22) using the following formula:

$$D_x^{\alpha*} D_x^{\alpha} u(i,j) \approx \sum_{k=-L}^{-1} w_{|k|}^{(\alpha)} \nabla u(i-k,j) + \sum_{k=1}^L w_k^{(\alpha)} \nabla u(i-k,j),$$
 (23)

Similarly, we can obtain

 $D_y^{\alpha*} D_y^{\alpha} u(i,j) \approx \sum_{k=-L}^{-1} w_{|k|}^{(\alpha)} \nabla u(i,j-k) + \sum_{k=1}^{L} w_k^{(\alpha)} \nabla u(i,j-k).$ (24)

Fractional-Order Differential Operator

From (23) and (24), the concise discrete formula of the fractional-order differential operator can be described by

$$\begin{split} D_x^{\alpha*} D_x^{\alpha} u(i,j) + D_y^{\alpha*} D_y^{\alpha} u(i,j) &\approx \sum_{(\bar{i},\bar{j})\in\chi(i,j)} w_{k_{\bar{i}\bar{j}}}^{(\alpha)} (u(\bar{i},\bar{j}) - u(i,j)), \\ D_x^{\alpha*} D_x^{\alpha} v(i,j) + D_y^{\alpha*} D_y^{\alpha} v(i,j) &\approx \sum_{(\bar{i},\bar{j})\in\chi(i,j)} w_{k_{\bar{i}\bar{j}}}^{(\alpha)} (v(\bar{i},\bar{j}) - v(i,j)). \end{split}$$

 $\chi(i,j)$ denotes the set of neighbors of pixel (i,j) in axis x and y; $k_{\overline{ij}}$ can be obtained by $max(|\overline{i}-i|,|\overline{j}-j|)$.

Discrete Euler-Lagrange Equations

Let: $I_{xx}(i,j) = I_x(i,j) \times I_x(i,j), \quad I_{yy}(i,j) = I_y(i,j) \times I_y(i,j),$ $I_{xy}(i,j) = I_x(i,j) \times I_y(i,j), \quad I_{tx}(i,j) = I_t(i,j) \times I_x(i,j),$ $I_{ty}(i,j) = I_t(i,j) \times I_y(i,j).$

The discrete Euler-Lagrange equations can finally be written as

$$\begin{split} I_{xx}(i,j)u(i,j) + I_{xy}(i,j)v(i,j) + \lambda \sum_{(\bar{i},\bar{j})\in\chi(i,j)} w_{k_{\bar{i}\bar{j}}}^{(\alpha)}(u(\bar{i},\bar{j}) - u(i,j)) &= -I_{tx}(i,j), \\ I_{xy}(i,j)u(i,j) + I_{yy}(i,j)v(i,j) + \lambda \sum_{(\bar{i},\bar{j})\in\chi(i,j)} w_{k_{\bar{i}\bar{j}}}^{(\alpha)}(v(\bar{i},\bar{j}) - v(i,j)) &= -I_{ty}(i,j). \end{split}$$

Structure of the Linear System

The linear system can be written as:

$$AX = -B$$

$$A = \begin{pmatrix} I_{xx} - \lambda D^{\alpha^*} D^{\alpha} & I_{xy} \\ I_{yx} & I_{yy} - \lambda D^{\alpha^*} D^{\alpha} \end{pmatrix}$$
$$X = [U, V]^T \qquad B = [I_{tx}, I_{ty}]^T$$

It can be solved by many typical methods such as the Jacobi method, the Gauß–Seidel method, the successive overrelaxation method and the preconditioned conjugate gradient (PCG) method.

Good for finding the global minimum.

 $EE = \sqrt{(u - u_{GT})^2 + (v - v_{GT})^2}.$

(u, v, 1) is the estimated flow vector. $(u_{GT}, v_{GT}, 1)$ is the ground-truth flow vector.

The accuracy of optical flow estimation algorithms can be improved by using the fractional-order derivative instead of the first-order derivative.

Image Sequence		Venus	
Models	AVAE	SDAE	AVEE
H-S model	0.1641	0.4176	0.5494
FOVOF model	0.1561	0.3692	0.5334
Image Sequence	Dimetrodon		
Models	AVAE	SDAE	AVEE
H-S model	0.0643	0.0638	0.1908
FOVOF model	0.0617	0.0630	0.1861
Image Sequence	Hydrangea		
Models	AVAE	SDAE	AVEE
H-S model	0.0522	0.1070	0.2967
FOVOF model	0.0521	0.1063	0.2885
	RubberWhale		
Image Sequence		RubberWhale	
Image Sequence Models	AVAE	RubberWhale SDAE	AVEE
Image SequenceModelsH-S model	AVAE 0.1269	RubberWhale SDAE 0.2588	AVEE 0.2268
Image SequenceModelsH-S modelFOVOF model	AVAE 0.1269 0.1167	RubberWhale SDAE 0.2588 0.2439	AVEE 0.2268 0.2071
Image SequenceModelsH-S modelFOVOF modelImage Sequence	AVAE 0.1269 0.1167	RubberWhale SDAE 0.2588 0.2439 Grove	AVEE 0.2268 0.2071
Image SequenceModelsH-S modelFOVOF modelImage SequenceModels	AVAE 0.1269 0.1167 AVAE	RubberWhale SDAE 0.2588 0.2439 Grove SDAE	AVEE 0.2268 0.2071 AVEE
Image SequenceModelsH-S modelFOVOF modelImage SequenceModelsH-S model	AVAE 0.1269 0.1167 AVAE 0.0700	RubberWhale SDAE 0.2588 0.2439 Grove SDAE 0.1321	AVEE 0.2268 0.2071 AVEE 0.2919
Image SequenceModelsH-S modelFOVOF modelImage SequenceModelsH-S modelFOVOF model	AVAE 0.1269 0.1167 AVAE 0.0700 0.0696	RubberWhale SDAE 0.2588 0.2439 Grove SDAE 0.1321 0.1307	AVEE 0.2268 0.2071 AVEE 0.2919 0.2910
Image SequenceModelsH-S modelFOVOF modelImage SequenceModelsH-S modelFOVOF modelImage Sequence	AVAE 0.1269 0.1167 AVAE 0.0700 0.0696	RubberWhale SDAE 0.2588 0.2439 Grove SDAE 0.1321 0.1307 Urban	AVEE 0.2268 0.2071 AVEE 0.2919 0.2910
Image SequenceModelsH-S modelFOVOF modelImage SequenceModelsH-S modelFOVOF modelImage SequenceModels	AVAE 0.1269 0.1167 AVAE 0.0700 0.0696 AVAE	RubberWhale SDAE 0.2588 0.2439 Grove SDAE 0.1321 0.1307 Urban SDAE	AVEE 0.2268 0.2071 AVEE 0.2919 0.2910 AVEE
Image SequenceModelsH-S modelFOVOF modelImage SequenceModelsH-S modelFOVOF modelImage SequenceModelsH-S modelImage SequenceModels	AVAE 0.1269 0.1167 AVAE 0.0700 0.0696 AVAE 0.2850	RubberWhale SDAE 0.2588 0.2439 Grove SDAE 0.1321 0.1307 Urban SDAE 0.6526	AVEE 0.2268 0.2071 AVEE 0.2919 0.2910 AVEE 1.3944

Comparison of AVAE, SDAE and AVEE between our proposed FOVOF model and H-S model for the different image sequences.

$$AE = \arccos\left(\frac{1 + u \times u_{GT} + v \times v_{GT}}{\sqrt{1 + u \times u + v \times v}\sqrt{1 + u_{GT} \times u_{GT} + v_{GT} \times v_{GT}}}\right)$$

➢ From the table, it can be seen that our model obtains better results than the H−S model for all the image sequences.

➢ It demonstrates the validity of the generalization of differential order.

Improved Fractional-Order Variational Optical Flow Model

Model description:

$$\lim_{w \to w} \int_{\Omega} |D^{\alpha}g| + \int_{\Omega} c(|Dw|)|Dw| + \lambda \|\rho(w,g)\|_{1}$$

(26)

 $\boldsymbol{w} := (u, v)^{\top}$ is the optic flow field;

g is the varying illumination;

$$D^{\alpha} := (D_x^{\alpha}, D_y^{\alpha})^{\top}; \qquad |D^{\alpha}u| = \sqrt{(D_x^{\alpha}u)^2 + (D_y^{\alpha}u)^2}.$$
$$c(x) = \frac{1}{1 + (\frac{x}{\theta})^2}$$

Discrete Formulation

Discrete model:

$$\min_{g \in X, w \in Y} \|D^{\alpha}g\|_{1} + \|c(|Dw|)Dw\|_{1} + \lambda \|\rho(w,g)\|_{1}$$

(27)

 $\|c(|Dw|)Dw\|_{1} = \sum_{i,j} c(|Dw_{ij}|)|Dw_{ij}| \quad \|D^{\alpha}g\|_{1} = \sum_{i,j} |D^{\alpha}g_{ij}|$ $\rho(w,g) = I_{t} + (\nabla I)^{T}(w - w^{0}) + \beta g$

I(x, y, t) is the given image sequence;

 $(x,y)^T$ denotes the location with a rectangular image domain $\Omega \in R$;

 ∇I is the spatial image gradient;

 I_t is the time image gradient.

Saddle-Point Formulation

Saddle-Point Formulation:

(28)

 $\min_{g \in X, w \in Y} \max_{p \in Y, q \in Z} \langle D^{\alpha}g, p \rangle_{Y} + \langle c(|Dw|)Dw, q \rangle_{Z} + \lambda \|\rho(w, g)\|_{1} - \delta_{P}(p) - \delta_{Q}(q)$

We define a scalar product in Y:

$$\langle a,b \rangle_Y = \sum_{i,j} (a_1b_1 + a_2b_2)_{ij} \quad a = (a_1,a_2) \in Y, \quad b = (b_1,b_2) \in Y$$

We define a scalar product in $Z = Y \times Y$:

$$\langle a,b \rangle_Z = \sum_{i,j} (a_1b_1 + a_2b_2 + a_3b_1 + a_4b_4)_{ij}$$

 $a = (a_1, a_2, a_3, a_4) \in Z, \qquad b = (b_1, b_2, b_3, b_4) \in Z$

Saddle-Point Formulation

$$\delta_P(p) = \begin{cases} 0, & p \in P \\ +\infty, & others \end{cases}$$

$$P = \{p \in Y : \|p\|_{\infty} \le 1\}$$

$$\delta_Q(q) = \begin{cases} 0, & q \in Q \\ +\infty, & others \end{cases} \qquad Q = \{$$

$$Q = \{q \in Z : \|q\|_{\infty} \le 1\}$$

Numerical Scheme

Step1:

Let the input image sequence be I and set n = 0. Initialize w^0 , g^0 , p^0 , q^0 , $\alpha, \lambda, \beta, \tau, \sigma$ and iteration number N_{iter} .

Step2:

$$p^{n+1} = \frac{\widetilde{p}^n}{\max(1, |\widetilde{p}^n|)}$$
$$q^{n+1} = \frac{\widetilde{q}^n}{\max(1, |\widetilde{q}^n|)}$$

$$\widetilde{p}^{n+1} = p^n + \sigma D^\alpha \overline{g}^n$$

$$\widetilde{q}^{n+1} = q^n + \sigma c(|D\overline{w}^n|) D\overline{w}^n$$

Step3:

$$g^{n+1} = \tilde{g}^{n+1} + \begin{cases} \tau\lambda\beta, & \rho^{n+1} < -\tau\lambda|a|^2 \\ -\tau\lambda\beta, & \rho^{n+1} > \tau\lambda|a|^2 \\ -\frac{\rho^{n+1}\beta}{|a|^2}, & |\rho^{n+1}| \le \tau\lambda|a|^2 \end{cases}$$
$$w^{n+1} = \tilde{w}^{n+1} + \begin{cases} \tau\lambda\nabla I, & \rho^{n+1} < -\tau\lambda|a|^2 \\ -\tau\lambda\nabla I, & \rho^{n+1} > \tau\lambda|a|^2 \\ -\frac{\rho^{n+1}\nabla I}{|a|^2}, & |\rho^{n+1}| \le \tau\lambda|a|^2 \end{cases}$$

$$\begin{split} \widetilde{g}^{n+1} &= g^n - \tau D^{\alpha *} p^{n+1} & \widetilde{w}^{n+1} = w^n - \tau c(|D^*q^{n+1}|) D^*q^{n+1} \\ |a| &= \sqrt{\beta^2 + |\nabla I|^2} & \rho^{n+1} = I_t + \nabla I(\widetilde{w}^{n+1} - w^0) + \beta \widetilde{g}^{n+1} \end{split}$$

Numerical Scheme

Step4: $\overline{g}^{n+1} = 2g^{n+1} - g^n$ $\overline{w}^{n+1} = 2w^{n+1} - w^n$

Step5:

If $n = N_{iter}$, stop; else, set n = n + 1 and go to step 2.

Multi-scale approach also is used.

Experiments: Venus

The test images come from [38]

Experiments: Venus

Fractional Order Optical Flow Demo: Venus

YangQuan Chen, Dali Chen, Dingyu Xue

yangquan.chen@ucmerced.edu; yqchen@ieee.org MESA (Mechatronics, Embedded Systems and Automation) LAB, School of Engineering, University of California, Merced, 5200 N Lake Road, Merced, CA 95343, USA

<u>chendali@ise.neu.edu.cn,</u> <u>xuedingyu@ise.neu.edu.cn</u> Information Science and Engineering Northeastern University Shenyang 110004, PR China

Experiments: RubberWhale

Experiments: RubberWhale

Fractional Order Optical Flow Demo: RubberWhale

YangQuan Chen, Dali Chen, Dingyu Xue

yangquan.chen@ucmerced.edu; _yqchen@ieee.org MESA (Mechatronics, Embedded Systems and Automation) LAB, School of Engineering, University of California, Merced, 5200 N Lake Road, Merced, CA 95343, USA

<u>chendali@ise.neu.edu.cn,</u> <u>xuedingyu@ise.neu.edu.cn</u> Information Science and Engineering Northeastern University Shenyang 110004, PR China

Experiments: Hydrangea

Experiments: Hydrangea

Fractional Order Optical Flow Demo: Hydrangea

YangQuan Chen, Dali Chen, Dingyu Xue

yangquan.chen@ucmerced.edu; yqchen@ieee.org MESA (Mechatronics, Embedded Systems and Automation) LAB, School of Engineering, University of California, Merced, 5200 N Lake Road, Merced, CA 95343, USA

chendali@ise.neu.edu.cn, xuedingyu@ise.neu.edu.cn Information Science and Engineering Northeastern University Shenyang 110004, PR China
Experiments: Grove

Experiments: Grove

Fractional Order Optical Flow Demo: Grove

YangQuan Chen, Dali Chen, Dingyu Xue

yangquan.chen@ucmerced.edu; yqchen@ieee.org MESA (Mechatronics, Embedded Systems and Automation) LAB, School of Engineering, University of California, Merced, 5200 N Lake Road, Merced, CA 95343, USA

<u>chendali@ise.neu.edu.cn,</u> <u>xuedingyu@ise.neu.edu.cn</u> Information Science and Engineering Northeastern University Shenyang 110004, PR China

Experiments: Dimetrodon

The proposed model is able to properly estimate the optical flow.

Experiments: Dimetrodon

Fractional Order Optical Flow Demo: Dimetrodon

YangQuan Chen, Dali Chen, Dingyu Xue

yangquan.chen@ucmerced.edu; yqchen@ieee.org MESA (Mechatronics, Embedded Systems and Automation) LAB, School of Engineering, University of California, Merced, 5200 N Lake Road, Merced, CA 95343, USA

chendali@ise.neu.edu.cn, xuedingyu@ise.neu.edu.cn Information Science and Engineering Northeastern University Shenyang 110004, PR China

The proposed model is able to properly estimate the optical flow.

Experiments:

Table 1: AVAE quantitative comparison

Model	Venus	Dimetrodon	Hydrangea	RubberWhale	Grove
H-S Model	0.1641	0.0643	0.0522	0.1269	0.0700
FOVOF Model	0.1561	0.0617	0.0521	0.1167	0.0696
IFOVOF Model($\alpha =$	1) 0.0875	0.0578	0.0401	0.0718	0.0478
IFOVOF Model($\alpha = 1$	1.2) 0.0869	0.0567	0.0393	0.0695	0.0476

This model obtains better results than the FOVOF model.
 The generalization of differential order is helpful for

improving the accuracy.

Conclusion

Two fractional-order variational optical flow model are proposed, see in [37];

- Two effective numerical algorithms are proposed;
- They can be combined with the multi-scale approach;
- > Improve the accuracy;
- > Provide a new tool for motion estimation.

- 1. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, New Jersey (2002)
- Dali Chen, YangQuan Chen* and DingyuXue. "Digital Fractional Order Savitzky-Golay Differentiator." IEEE Trans. Circuit and Systems II, Volume: 58 Issue: 11 Pages: 758-762 Published: NOV 2011, DOI: 10.1109/TCSII.2011.2168022
- Dali Chen, YangQuan Chen, DingyuXue. 1-D and 2-D digital fractional-order Savitzky-Golay differentiator. Signal, Image and Video Processing 05/2012; 6(3):503-511. DOI 10.1007/s11760-012-0334-0
- 4. B. Mathieu, P. Melchior, A. Oustaloup, and C. Ceyral, Fractional differentiation for edge detection," Signal Process., vol. 83, pp. 2421-2432, November 2003.
- 5. I. Podlubny, Ed., Fractional Di®erential Equations. San Diego: Academic Press, 1999.
- Dali Chen, DingyuXue, YangQuan Chen. "Fractional differentiation-based approach for robust image edge detection" (#046) Proceedings of 2012 Fractional Derivative and Applications (FDA2012), Nanjing, China, May 15-17, 2012.

- P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.
- 8. Y. L. You and M. Kaveh, "Fourth-order partial differential equations for noise removal," IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1723–1730, 2000.
- 9. L. Ruding, S. Osher, E. Fatemi, Physica D. 60, 259 (1992)
- 10. B. Jian and X. C. Feng, "Fractional-order anisotropic diffusion for image denoising," IEEE Transactions on Image Processing, vol. 16, no. 10, pp. 2492–2502, 2007.
- 11. W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008.
- 12. Dali Chen, Shenshen Sun, Congrong Zhang, YangQuan Chen, DingyuXue. Fractional-Order TV-L2 Model for Image Denoising. 2013. Special Issue on "Fractional Calculus: Theory and Numerical Methods"
 - http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.2478/s11534-013-0241-1 (Central European Journal of Physics) (online)

- 13. P. Guidotti, J. V. Lambers, J. Math Imaging Vis. 33, 25 (2009)
- 14. E. Cuesta, M. Kirane, S. A. Malik, Signal Processing. 92, 553 (2012)
- 15. M. Janev, S. Pilipovi c, T. Atanackovi c, R. Obradovi c, N. Ralevi c, Mathematical and Computer Modelling.54, 729 (2011)
- 16. Y. Wang, W. Yin, and Y. Zhang, A Fast Algorithm for Image Deblurring With Total Variation Regularization, Rice Univ., Houston. TX, Tech. Rep., 2007
- 17. M. A. T. Figueiredo, J. M. Bioucas{Dias, R. D. Nowak, IEEE Transactions on Image Processing. 16, 2980(2007)
- J. P. Oliveira, J. M. Bioucas{Dias, M. A. T. Figueiredo, Signal Processing. 89, 1683 (2009)
- 19. M. Hajiaboli, IPSJ Transactions on Computer Vision and Application. 2, 94 (2010)
- 20. T.F. Chan, L.A. Vese. Active contours without edges [J], IEEE Transactions on Medical Imaging, 2001, 10 (2): 266-277.
- Li Chunming, Kao Chiu-Yen, Gore John C.. Ding Zhaohua. Minimization of regionscalable fitting energy for image segmentation [J], IEEE Transactions on Image Processing, 17(10): 1940-1949.2008

- 22. D. Adalsteinsson, J. Sethian. A Fast Level Set Method for propagating interface [J], Journal of Computational Physics,1995,118: 269-277.
- 23. D. Mumford, J. Shah. Boundary detection by minimizing functions. IEEE Computer Society Conference on Computer Vision ans Pattern Recognition, San Francisco, CA, USA, 1985: 22-26.
- C. Li, C. Xu, C. Gui, M. D. Fox. Level set evolution without re-initialization: A new variational formulation. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2005, 1: 430-436.
- S.Osher, J.A.Sethian. Fronts propagating with curvature dependent speed: algorithm based on Hamilton-Jacobi formulation[J]. Journal of Compute Physics, 1988, 79(1): 12-49.
- 26. Zhao H K, Chan T, Merriman V. A variational level-set approach to multiphase motion[J]. Journal of Computational Physics, 1996, 127(1):179-195
- 27. Sapiro G. Geometric partial differential equations and image analysis[M]. Cambridge University Press, 2001.

- 28. T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011.
- 29. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004.
- H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009.
- P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010.
- 32. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004.
- 33. H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011.
- 34. S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011.

- 35. M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012.
- 36. Horn B, Schunck, B. 1981 Determining optical flow. Artif. Intell. 16, 185–203. (doi:10.1016j.bbr.2011.03.031)
- Dali Chen, Hu Sheng, YangQuan Chen and DingyüXue. Fractional-order variational optical flow model formotion estimation. Phil Trans R Soc A 20120148. http://dx.doi.org/10.1098/rsta.2012.0148 (proofread, to appear)
- 38. Simon B, Daniel S, Lewis JP, Stefan R, Michael JB, Richard S. 2011 A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92, 1–31. (doi:10.1007/s11263-010-0390-2)
- 39. Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. J Math Imaging Vis, 2011, 40(1): 120-145.

Take home message:

More optimal image processing can be made possible by using fractional order differentiation and fractional order partial differential equations.

Want to be more optimal? Go fractional calculus!

Q & A

More info:

http://mechatronics.ucmerced.edu/research/applied-fractional-calculus