# Efficient nonlinear filtering of a singularly perturbed stochastic hybrid system

# Jun H. Park, Boris Rozovskii and Richard B. Sowers

### Abstract

Our focus in this work is to investigate an efficient state estimation scheme for a singularly 10 perturbed stochastic hybrid system. As stochastic hybrid systems have been used recently in diverse areas, the importance of correct and efficient estimation of such systems cannot be 12overemphasized. The framework of nonlinear filtering provides a suitable ground for on-line estimation. With the help of intrinsic multiscale properties of a system, we obtain an efficient 13 estimation scheme for a stochastic hybrid system. 14

#### 1. Introduction

The theory of filtering gives a recursive procedure for estimating an evolving signal or state 18 from a noisy observation process. Since the state is usually hidden and evolves according to 19 its own dynamics, the objective is to compute the conditional distribution of the state given 20 noisy observations. Aside from several special cases where the distribution of the state can  $^{21}$ be described with a finite number of moments or modes (for example, the celebrated Kalman 22 filter [11] for linear systems and Beneš [2] and Daum [4] filters for special nonlinear systems), 23 filtering problems in general deal with infinite-dimensional objects such as stochastic partial differential equations (PDEs) for posterior densities and, thus, require enormous amounts of 24 computation.  $^{25}$ 

In this work, our interest lies in a filtering problem for stochastic hybrid systems. As 26stochastic hybrid systems have been used in diverse areas to model complex random phenomena 27 which were not captured by state models with either continuous or discrete dynamics alone, 28 their estimation has become an active research field for the last decade (cf. [9, 13, 19, 20, 24] 29 and references therein).

30 The computation required to solve multidimensional nonlinear filtering problems might be 31 quite intensive. This may hinder the practical implementation of stochastic hybrid systems in time-critical applications such as target tracking, fault detection, volatility estimation in 32 financial markets, etc. However, if the system can be cast into a multiscale setting, significant 33 reduction in the computational complexity may be available. 34

Singularly perturbed dynamical systems are a natural framework for dealing with multiscale 35 systems [12, 14, 21]. In several riveting areas including biology [3], optimal control [6], 36 and finance [26], various phenomena have been successfully modeled by singularly perturbed 37 stochastic hybrid systems.

38 We here consider nonlinear filtering for continuous-discrete state processes given by a pair of 39 fast-slow processes. More specifically, we choose a fast diffusion process with a slow switching process [24]. Both the fast and slow processes are coupled so that neither process on its own 40is Markovian. 41

More specifically, we will consider a state process  $(X_t^{\varepsilon}, \Theta_t^{\varepsilon})$ , where  $\varepsilon$  is a small parameter, 42 $X_t^{\epsilon}$  is the  $\mathbb{R}^d$ -valued diffusion process governed by the following stochastic differential equation 43

44

01 02

03

04 05 06

07 08

09

11

15 16

Received 17 August 2010; revised 14 March 2011. 45

<sup>2000</sup> Mathematics Subject Classification 60H15 (primary), 35R60, 60G35, 34C29, 70K65 (secondary). 46

<sup>01</sup> (SDE):

02 03

$$dX_t^{\varepsilon} = -\frac{1}{\varepsilon} \Lambda_{\Theta_t^{\varepsilon}} (X_t^{\varepsilon} - \Theta_t^{\varepsilon}) \, dt + \frac{1}{\sqrt{\varepsilon}} \, dW_t, \tag{1.1}$$

<sup>04</sup> and  $\Theta_t^{\varepsilon}$  is a (continuous-time) conditionally Markov process taking values in a finite set S. <sup>05</sup> Namely,

$$\mathbb{P}\{\Theta_{t+\Delta}^{\varepsilon} = \theta_1 \mid \Theta_t^{\varepsilon} = \theta_2, X_t^{\varepsilon} = x\} = q_{\theta_1,\theta_2}(x)\Delta + o(\Delta),$$

07 08 where

09 10

11

22

26 27 28

31

33

06

$$q_{\theta_1,\theta_2}(x) \ge 0 \quad \text{if } \theta_1 \neq \theta_2, \\ q_{\theta,\theta}(x) = -\sum_{\substack{\theta' \in S \\ \theta' \neq \theta}} q_{\theta,\theta'}(x), \quad \theta \in S.$$

In the literature, the process  $\Theta_t^{\varepsilon}$  is often called the parameter process or simply the 'parameter' and we will use this term as well.

We assume that the  $q_{\theta,\theta'}$  are all bounded and measurable. We also assume that for each  $\theta \in S$ , the eigenvalues of the matrix  $\Lambda_{\theta} = (\lambda_{i,i'}^{\theta})_{1 \leq i,i' \leq d}$  are all strictly positive, and dW in (1.1) is a *d*-dimensional Brownian motion<sup>†</sup>.

<sup>16</sup> Note that under these assumptions, the distribution of  $X_t^{\varepsilon}$  quickly relaxes to a locally <sup>17</sup> 'invariant' distribution centered at the current value of the parameter process. Parameter <sup>18</sup> process  $\Theta_t^{\varepsilon}$  evolves on a much slower scale, and its dynamics depend on  $X^{\varepsilon}$ . The small <sup>19</sup> parameter  $\varepsilon$  measures the ratio of slow and fast scales.

We observe a corrupted function of  $X^{\varepsilon}$ ; that is, the *n*-dimensional observation process  $Y^{\varepsilon}$  is given by

$$dY_t^{\varepsilon} = h(X_t^{\varepsilon}, \Theta_t^{\varepsilon}) dt + dV_t \tag{1.2}$$

for some bounded and continuous sensor function h from  $\mathbb{R}^d \times S$  to  $\mathbb{R}^n$  and where V is a standard *n*-dimensional Brownian motion. We also assume that  $(X_0^{\varepsilon}, \Theta_0^{\varepsilon})$  is independent of the other sources of randomness in our system and that there is a  $\rho \in C_0(\mathbb{R}^d \times S)$  such that

$$\mathbb{P}\{X_0^{\varepsilon} \in A, \Theta_0^{\varepsilon} \in A'\} = \sum_{\theta \in A'} \int_{x \in A} \rho(x, \theta) \, dx$$

for all  $A \in \mathscr{B}(\mathbb{R}^d)$  and  $A' \subset S$ . Let us also assume that  $Y_0^{\varepsilon} = 0$ . Based on the observation process, we want to reconstruct the law of  $\Theta^{\varepsilon}$ ; that is, to compute

$$\mathbb{P}\{\Theta_t^\varepsilon \in A \mid \mathscr{Y}_t^\varepsilon\},\$$

<sup>32</sup> where

 $\mathscr{Y}_t^{\varepsilon} \stackrel{\text{def}}{=} \sigma\{Y_s^{\varepsilon} : 0 \leqslant s \leqslant t\}.$ 

We want to do this efficiently; that is, to find an effective filter which works as the scaling parameter  $\varepsilon \searrow 0$ .

36 The standard equations of filtering (which we will develop in a moment) require us to evolve 37 a conditional law for the full state; that is, the pair  $(X^{\varepsilon}, \Theta^{\varepsilon})$ . Since the fast  $X^{\varepsilon}$  quickly relaxes to its local invariant measure, it should not have too much information. Our objective is to 38 show that we can track  $\Theta^{\varepsilon}$  without fully resolving the conditional density of  $X^{\varepsilon}$ . Thus, instead 39 of solving an  $\mathbb{R}^d \times S$ -dimensional Zakai equation, we can effectively solve an approximate Zakai 40 equation whose state space is the finite set S. The resulting equation can be used in place of 41 the original more complex equations to provide qualitatively accurate and computationally 42feasible descriptions either for simulation and prediction or for real-time control. 43

<sup>&</sup>lt;sup>44</sup> <sup>†</sup> By means of various coordinate changes, we can transform the problem so that dW can have any positive-<sup>45</sup> definite covariance matrix, which may, in fact, depend on  $\Theta_t^{\varepsilon}$ . Note that we have included  $\Theta_t^{\varepsilon}$ -dependence in <sup>46</sup> our sensor function in (1.2).

01 This type of result has been covered in the literature within the framework of homogenization 02 theory; we refer to [16] and the references therein for more detail. Methodologically, this study is similar to [15] and [16]. In the former work, the observation becomes independent of the 03 system in the limit, while the latter has an explicit dependence on the slow variable in the 04 limit. In [15, 16], the fast motion was a fast angular drift. In contrast to these papers, the 05 fast motion (1.1) has both drift and diffusion, so the speed of averaging depends on a spectral 06 gap. In this work, we show that the observation in the limit still has crucial information for 07 estimation even though there is no explicit dependency on the system. This property is quite 08 useful in many practical applications such as molecular motors [22] and rare-event simulations, 09 where the observation could be given in terms of the fast variable. To the authors' knowledge, 10 there is no previous work in this setting.

#### 11 12

13

17 18

21

22

25 26 27

29

30 31

41 42 43

## 2. The Zakai equation

Our first step is to recall the known framework of nonlinear filtering; that is, the Zakai equation [1, 18, 25]. Let us start with the generator of the fast motion for a fixed value of the parameter. For each  $\theta \in S$ , define the second-order partial differential operator

$$(\mathscr{L}_{\theta}f)(x) \stackrel{\text{def}}{=} -\sum_{1 \leq i,j \leq d} \lambda_{i,j}^{\theta}(x_j - \theta_j) \frac{\partial f}{\partial x_i}(x) + \frac{1}{2} \sum_{1 \leq i \leq d} \frac{\partial^2 f}{\partial x_i^2}(x)$$

for  $f \in C^{\infty}(\mathbb{R}^d)$  and  $x = (x_1, x_2, \dots, x_d)$ . We also define the generator of the parameter process as

$$(\mathscr{Q}f)(x,\theta) \stackrel{\mathrm{def}}{=} \sum_{\theta' \in S} f(\theta')q_{\theta,\theta'}(x)$$

for all  $f \in B(\mathbb{R}^d \times S)$ ,  $x \in \mathbb{R}^d$ , and  $\theta \in S$ . These are the generators of the fast and slow motions, and we propagate densities by their adjoints; define

$$(\mathscr{L}_{\theta}^*f)(x) \stackrel{\text{def}}{=} \sum_{1 \leqslant i, j \leqslant d} \lambda_{i, j}^{\theta} \frac{\partial}{\partial x_i} ((x_j - \theta_j)f)(x) + \frac{1}{2} \sum_{1 \leqslant i \leqslant d} \frac{\partial^2 f}{\partial x_i^2}(x)$$

<sup>28</sup> for  $f \in C^{\infty}(\mathbb{R}^d)$  and  $x = (x_1, x_2 \dots x_d)$  and

$$(\mathscr{Q}^*f)(x,\theta) \stackrel{\text{def}}{=} \sum_{\theta' \in S} f(\theta')q_{\theta',\theta}(x)$$

for all  $f \in B(\mathbb{R}^d \times S)$ ,  $x \in \mathbb{R}^d$ , and  $\theta \in S$ .

The Zakai equation in our setting is given by

$$du^{\varepsilon}(t, x, \theta) = \frac{1}{\varepsilon} \mathscr{L}_{\theta}^{*} u^{\varepsilon}(t, x, \theta) dt + \mathscr{Q}^{*} u^{\varepsilon}(t, x, \theta) dt + u^{\varepsilon}(t, x, \theta) h(x, \theta)^{T} dY_{t}^{\varepsilon}$$
  
$$= \frac{1}{\varepsilon} \mathscr{L}_{\theta}^{*} u^{\varepsilon}(t, x, \theta) dt + \mathscr{Q}^{*} u^{\varepsilon}(t, x, \theta) dt + u^{\varepsilon}(t, x, \theta) h(x, \theta)^{T} dV_{t}$$
  
$$+ u^{\varepsilon}(t, x, \theta) h(x, \theta)^{T} h(X_{t}^{\varepsilon}, \Theta_{t}^{\varepsilon}) dt,$$
  
(2.1)

$$u^{\varepsilon}(0, x, \theta) = \rho(x, \theta)$$

Under the assumptions of this paper, one could show that for every  $\varepsilon > 0$ ,

$$\mathbb{P}\{X_t^{\varepsilon} \in A, \Theta_t^{\varepsilon} \in A' \mid \mathscr{Y}_t^{\varepsilon}\} = \frac{\sum_{\theta \in A'} \int_{x \in A} u^{\varepsilon}(t, x, \theta) \, dx}{\sum_{\theta \in S} \int_{x \in \mathbb{R}^d} u^{\varepsilon}(t, x, \theta) \, dx}, \quad A \in \mathscr{B}(\mathbb{R}^d), A' \subset S$$

 $_{44}$  with probability 1.

Note that in the literature on nonlinear filtering the Zakai equation is usually considered on a new probability space, where  $Y_t^{\varepsilon}$  is a Brownian motion. This space changes when the

<sup>o1</sup> parameter  $\varepsilon$  changes. This is inconvenient for our purposes. Therefore, we will consider (2.1) <sup>o2</sup> on a fixed probability space for all  $\varepsilon$ .

To see the asymptotic behavior of the solution of (2.1) as  $\varepsilon \searrow 0$ , we construct the invariant measure of the fast motion. For  $\theta \in S$ , define

$$B_{\theta} \stackrel{\text{def}}{=} \int_{s=0}^{\infty} \exp[-\Lambda_{\theta} s] \exp[-\Lambda_{\theta}^{T} s] \, ds$$

<sup>07</sup> and

05 06

08

11

12

15 16

19

20

23 24

27 28

33 34 35

36

38

$$\mu_{\theta}(x) \stackrel{\text{def}}{=} \frac{1}{\sqrt{(2\pi)^d \det B_{\theta}}} \exp\left[-\frac{1}{2}(x-\theta)' B_{\theta}^{-1}(x-\theta)\right], \quad x \in \mathbb{R}^d$$

<sup>10</sup> Then

$$\mathscr{L}^*_{\theta} \mu_{\theta}(x) = 0$$
 and  $\int_{\mathbb{R}^d} \mu_{\theta}(x) \, dx = 1$ 

for all  $\theta \in S$ . We want to find the effective behavior of the jumps by averaging over the invariant distribution of the fast motion. For each  $\theta_1$  and  $\theta_2$  in S, define

$$\bar{q}_{\theta_1,\theta_2} \stackrel{\text{def}}{=} \int_{x \in \mathbb{R}^d} q_{\theta_1,\theta_2}(x) \mu_{\theta_1}(x) \, dx$$

we still have that  $\bar{q}_{\theta_1,\theta_2} \ge 0$  if  $\theta_1 \ne \theta_2$  and  $\bar{q}_{\theta,\theta} = -\sum_{\substack{\theta' \in S \\ \theta' \ne \theta}} \bar{q}_{\theta,\theta'}$  for all  $\theta \in S$ . Define

$$(\bar{\mathscr{Q}}^*f)(\theta) \stackrel{\mathrm{def}}{=} \sum_{\theta' \in S} f(\theta') \bar{q}_{\theta',\theta}$$

for all  $f \in B(S)$ . We also need to average the sensor function and the initial condition; for each  $\theta \in S$ , define

$$\bar{h}(\theta) \stackrel{\text{def}}{=} \int_{x \in \mathbb{R}^d} h(x, \theta) \mu_{\theta}(x) \, dx \quad \text{and} \quad \bar{\rho}(\theta) \stackrel{\text{def}}{=} \int_{x \in \mathbb{R}^d} \rho(x, \theta) \mu_{\theta}(x) \, dx. \tag{2.2}$$

<sup>25</sup> The effective Zakai equation for  $\theta^{\varepsilon}$  should be given by averaging the coefficients of (2.1) with <sup>26</sup> respect to the invariant measure of the fast motion; that is,

$$dv^{\varepsilon}(t,\theta) = \bar{\mathscr{Q}^{*}}v^{\varepsilon}(t,\theta) dt + v^{\varepsilon}(t,\theta)\bar{h}(\theta)^{T}dY_{t}^{\varepsilon},$$
  
$$v^{\varepsilon}(0,\theta) = \bar{\rho}(\theta)$$
(2.3)

(see also II'in *et al.* [10]). Note that while we can find the effective behavior of the x variable in the coefficients of the Zakai equation (2.1), we cannot really average the observations since they are the inputs to the system. Thus, (2.3) is not a true Zakai equation; this is clear upon writing

$$dv^{\varepsilon}(t,\theta) = \bar{\mathscr{Q}}^{*}v^{\varepsilon}(t,\theta) dt + v^{\varepsilon}(t,\theta)\bar{h}(\theta)^{T}\{h(X_{t}^{\varepsilon},\Theta_{t}^{\varepsilon}) dt + dV_{t}\} = \bar{\mathscr{Q}}^{*}v^{\varepsilon}(t,\theta) dt + v^{\varepsilon}(t,\theta)\bar{h}(\theta)^{T}\{\bar{h}(\Theta_{t}^{\varepsilon}) dt + dV_{t}\} + v^{\varepsilon}(t,\theta)\bar{h}(\theta)^{T}\{h(X_{t}^{\varepsilon},\Theta_{t}^{\varepsilon}) - \bar{h}(\Theta_{t}^{\varepsilon})\} dt.$$

<sup>37</sup> The last term captures the deviation from a true Zakai equation.

Let us now collect our thoughts and formulate our results. For each t > 0, define

$$\pi_t^{\varepsilon}(A) \stackrel{\text{def}}{=} \frac{\sum_{\theta \in A} \int_{x \in \mathbb{R}^d} u^{\varepsilon}(t, x, \theta) \, dx}{\sum_{\theta \in S} \int_{x \in \mathbb{R}^d} u^{\varepsilon}(t, x, \theta) \, dx}; \quad A \subset S;$$

then  $\pi_t^{\varepsilon}(A) = \mathbb{P}\{\Theta_t^{\varepsilon} \in A \mid \mathscr{Y}_t^{\varepsilon}\}$ . Let us also define

$$\bar{\pi}_t^{\varepsilon}(A) \stackrel{\text{def}}{=} \frac{\sum_{\theta \in A} v^{\varepsilon}(t,\theta)}{\sum_{\theta \in S} v^{\varepsilon}(t,\theta)}; \quad A \subset S.$$

We note that the evolution of v is essentially an |S|-dimensional SDE, whereas that of  $u^{\varepsilon}$  is a stochastic partial differential equation (SPDE). Thus,  $\bar{\pi}_t^{\varepsilon}$  is a much simpler process to compute.

dynamics are  $\varepsilon$ -independent. Our main result is that as  $\varepsilon \searrow 0$ ,  $\overline{\pi}^{\varepsilon}$  is a good substitute for  $\pi^{\varepsilon}$ . THEOREM 2.1. For each t > 0,  $\lim_{\varepsilon \to 0} \mathbb{E}[d_{\mathscr{P}(S)}(\pi_t^{\varepsilon}, \bar{\pi}_t^{\varepsilon})] = 0.$ 3. Asymptotic analysis  $\tilde{u}^{\varepsilon}(t, x, \theta) \stackrel{\text{def}}{=} \frac{u^{\varepsilon}(t, x, \theta)}{\mu_{\theta}(x)}; \quad t \ge 0, x \in \mathbb{R}^d, \theta \in \mathbb{R}^d;$  $\pi_t^{\varepsilon}(A) \stackrel{\text{def}}{=} \frac{\sum_{\theta \in A} \int_{x \in \mathbb{R}^d} \tilde{u}^{\varepsilon}(t, x, \theta) \mu_{\theta}(x) \, dx}{\sum_{\theta \in G} \int_{x \in \mathbb{R}^d} \tilde{u}^{\varepsilon}(t, x, \theta) \mu_{\theta}(x) \, dx} \quad A \subset S.$  $\tilde{\mathscr{L}}_{\theta}^* f \stackrel{\text{def}}{=} \frac{1}{\mu_{\theta}} (\mathscr{L}_{\theta}^* (f \mu_{\theta}))$  $(\tilde{\mathscr{Q}}^*f)(x,\theta) \stackrel{\text{def}}{=} \frac{1}{\mu_{\theta}(x)} \sum_{\theta' \in S} \mu_{\theta'}(x) f(\theta') q_{\theta',\theta}(x)$  $( heta) = rac{
ho(x, heta)}{\mu_{ heta}(x)}.$ We next observe that  $v^{\varepsilon}$  satisfies a similar SPDE. Since  $\mu_{\theta}$  is the invariant measure for the generator  $\mathscr{L}_{\theta}, \mathscr{L}_{\theta}^* \mu_{\theta} \equiv 0$ . Defining  $\mathbf{1}: \mathbb{R}^d \to \mathbb{R}$  as  $\mathbf{1}: \mathbb{R}^d \mapsto 1$ , we thus have that  $\tilde{\mathscr{L}}_{\theta}^* \mathbf{1} \equiv 0$ . Hence, the function  $(t, x, \theta) \mapsto v^{\varepsilon}(t, \theta) = v^{\varepsilon}(t, \theta) \mathbf{1}(x)$  from  $\mathbb{R}_+ \times \mathbb{R}^d \times S$  satisfies

$$dv^{\varepsilon}(t,\theta) = \frac{1}{\varepsilon} (\tilde{\mathscr{L}}_{\theta}^{*} v^{\varepsilon})(t,x,\theta) dt + \bar{\mathscr{Q}}^{*} v^{\varepsilon}(t,\theta) dt + v^{\varepsilon}(t,\theta) \bar{h}(\theta)^{T} dY_{t}^{\varepsilon},$$
$$v^{\varepsilon}(0,\theta) = \bar{\rho}(\theta).$$

Marked Proof Ref: 53180 jcm2010-029 5 October 2011

05

06

09 10

11

15

16 17

01

07 Here  $d_{\mathscr{P}(S)}$  is the Prohorov metric on  $\mathscr{P}(S)$ . 08

Several preliminary steps will help make the proof of Theorem 2.1 more natural. Firstly, we 12will consider a slightly more intrinsic formulation of the Zakai equation. Secondly, we will 13 rewrite (2.3) in a way which facilitates comparison to the dynamics of the original problem. 14 To begin, let us define

Note also that the only dependence of  $\bar{\pi}^{\varepsilon}$  on  $\varepsilon$  is through the observation process  $Y^{\varepsilon}$ ; the actual

then 18

$$\int_{x \in \mathbb{R}^d} u^{\varepsilon}(t, x, \theta) f(x) \, dx = \int_{x \in \mathbb{R}^d} \tilde{u}^{\varepsilon}(t, x, \theta) f(x) \mu_{\theta}(x) \, dx, \quad t \ge 0, \theta \in S$$

for all  $f \in C_c^{\infty}(\mathbb{R}^d)$  and  $^{21}$ 

In other words, let us make our reference measure the invariant measure of the fast motion. If  $^{25}$ we define 26

for  $f \in C^{\infty}(\mathbb{R}^d)$  and  $x = (x_1, x_2, \dots, x_d)$  and 29

for all  $f \in B(\mathbb{R}^d \times S)$ ,  $x \in \mathbb{R}^d$ , and  $\theta \in S$ , we then have that 33

$$d\tilde{u}^{\varepsilon}(t,x,\theta) = \frac{1}{\varepsilon} \tilde{\mathscr{L}}_{\theta}^{*} \tilde{u}^{\varepsilon}(t,x,\theta) dt + \tilde{\mathscr{Q}}^{*} \tilde{u}^{\varepsilon}(t,x,\theta) dt + \tilde{u}^{\varepsilon}(t,x,\theta) h(x)^{T} dY_{t}^{\varepsilon}$$

$$= \frac{1}{\varepsilon} \tilde{\mathscr{L}}_{\theta}^{*} \tilde{u}^{\varepsilon}(t,x,\theta) dt + \tilde{\mathscr{Q}}^{*} \tilde{u}^{\varepsilon}(t,x,\theta) dt + \tilde{u}^{\varepsilon}(t,x,\theta) h(x)^{T} h(X_{t}^{\varepsilon},\Theta_{t}^{\varepsilon}) dt$$

$$+ \tilde{u}^{\varepsilon}(t,x,\theta) h(x)^{T} dV_{t},$$

$$(3.1)$$

$$\tilde{u}^{\varepsilon}(0, x, u)$$

23 24

27 28

30

31 32

34 35 36

37 38

3

41

42

 J. H. PARK ET AL.

We also note, of course, that

$$\bar{\pi}_t^{\varepsilon}(A) = \frac{\sum_{\theta \in A} \int_{x \in \mathbb{R}^d} v^{\varepsilon}(t,\theta) \mu_{\theta}(x) \, dx}{\sum_{\theta \in S} \int_{x \in \mathbb{R}^d} v^{\varepsilon}(t,\theta) \mu_{\theta}(x) \, dx}; \quad A \subset S.$$

Our immediate goal is then the following lemma. 

LEMMA 3.1. For each t > 0, we have that

$$\lim_{\varepsilon \searrow 0} \sum_{\theta \in S} \mathbb{E} \left[ \int_{x \in \mathbb{R}^d} |\tilde{u}^{\varepsilon}(t, x, \theta) - v^{\varepsilon}(t, \theta)|^2 \mu_{\theta}(x) \, dx \right] = 0.$$

This will be a crucial step towards the proof of Theorem 2.1; see Section 4.

The value of the linear dynamics of (1.1) is that they allow us to get explicit rates at which the fast motion achieves its stationary behavior (if the dynamics of  $X^{\varepsilon}$  had nonlinearities, one could in general get only abstract bounds on the rate of convergence to a stationary distribution). To formalize the notation surrounding this, fix  $\theta \in S$ . For each  $x \in \mathbb{R}^d$ , define 

$$\tilde{X}_t^{\theta,x} \stackrel{\text{def}}{=} \theta + \exp[-\Lambda_\theta t] x + \int_{s=0}^t \exp[-\Lambda_\theta (t-s)] \, dW_s, \quad t > 0.$$

Then  $\tilde{X}^{\theta,x}$  satisfies the SDE 

$$d\tilde{X}_t^{\theta,x} = -\Lambda_\theta(\tilde{X}_t^{\theta,x} - \theta) dt + dW_t, \tilde{X}_0^{\theta,x} = x;$$
(3.2)

 $^{21}$ this is a Markov process with generator  $\mathscr{L}_{\theta}$ . For t > 0 and  $f \in B(\mathbb{R}^d)$ , define 

$$(P_t^{\theta}f)(x) \stackrel{\text{def}}{=} \mathbb{E}[f(\tilde{X}_t^{\theta,x})].$$

This is the semigroup on  $B(\mathbb{R}^d)$  generated by  $\mathscr{L}_{\theta}$  (and of course  $\lim_{t \searrow 0} P_t^{\theta} f = f$  pointwise).  $^{24}$ We can write a kernel representation for  $P_t^{\theta}$ . For every t > 0, define  $^{25}$ 

$$B_{\theta}(t) \stackrel{\text{def}}{=} \int_{s=0}^{t} \exp[-\Lambda_{\theta}(t-s)] \exp[-\Lambda_{\theta}^{T}(t-s)] \, ds = \int_{s=0}^{t} \exp[-\Lambda_{\theta}s] \exp[-\Lambda_{\theta}^{T}s] \, ds.$$

Of course,  $\lim_{t\to\infty} B_{\theta}(t) = B_{\theta}$ . Define 

$$p_x^{\theta}(t,z) \stackrel{\text{def}}{=} (2\pi)^{-d/2} (\det B_{\theta}(t))^{-1/2} \\ \times \exp[-\frac{1}{2}(z - (\theta + \exp[-\Lambda_{\theta}t]x))^T B_{\theta}^{-1}(t)(z - (\theta + \exp[-\Lambda_{\theta}t]x))]$$

for all t > 0 and x and z in  $\mathbb{R}^d$ . Then 

$$(P_t^{\theta}f)(x) = \int_{z \in \mathbb{R}^d} p_x^{\theta}(t, z) f(z) \, dz$$

for all t > 0,  $x \in \mathbb{R}^d$ , and  $f \in B(\mathbb{R}^d)$ . For each  $f \in C_c^{\infty}(\mathbb{R}^d)$ , let us next define 

$$(S_t^{\theta} f)(x) \stackrel{\text{def}}{=} \frac{1}{\mu_{\theta}(x)} \int_{z \in \mathbb{R}^d} f(z) p_z^{\theta}(t, x) \mu_{\theta}(z) \, dz$$

for all t > 0 and  $x \in \mathbb{R}^d$ , so that 

$$\int_{x \in \mathbb{R}^d} (S_t^\theta f)(x)g(x)\mu_\theta(x) \, dx = \int_{z \in \mathbb{R}^d} f(z)\mu_\theta(z)(P_t^\theta g)(z) \, dz \tag{3.3}$$

for all f and g in  $C_c^{\infty}(\mathbb{R}^d)$  and all t > 0. In fact, we should think of  $S_t^{\theta}$  as the adjoint of  $P_t^{\theta}$ . For all f and g in  $C_c(\mathbb{R}^d)$ , define 

$$\langle f, g \rangle_{\theta} \stackrel{\text{def}}{=} \int_{x \in \mathbb{R}^d} f(x) g(x) \mu_{\theta}(x) \, dx$$

Marked Proof Ref: 53180 jcm2010-029 5 October 2011

01 and define  $||f||_{\theta} \stackrel{\text{def}}{=} \sqrt{\langle f, f \rangle_{\theta}}$  for all  $f \in C_c(\mathbb{R}^d)$ ; this is a norm on  $C_c(\mathbb{R}^d)$ . Define  $L^2(\mu_{\theta})$  as the 02 closure of  $C_c(\mathbb{R}^d)$  with respect to this norm; then  $\langle \cdot, \cdot \rangle_{\theta}$  can uniquely be extended to an inner 03 product on  $L^{2}(\theta)$ . Then (3.3) can be written as 04  $\langle S^{\theta}_{t} f, q \rangle_{\theta} = \langle f, P^{\theta}_{t} q \rangle_{\theta}$ 05 for all f and g in  $C_c(\mathbb{R}^d)$  and all t > 0. 06 07 LEMMA 3.2. Fix  $f \in C_c^{\infty}(\mathbb{R}^d)$ . For t > 0 and  $x \in \mathbb{R}^d$ , define  $w(t, x) \stackrel{\text{def}}{=} (S_t^{\theta} f)(x)$ . Then w 08 satisfies the PDE 09  $\frac{\partial w}{\partial t}(t,x) = \tilde{\mathscr{L}}_{\theta}^* w(t,x) \quad t > 0, x \in \mathbb{R}^d,$ 10 11  $w(0, \cdot) = f$ 1213 *Proof.* The proof is fairly standard, but, for the sake of completeness, we will outline it. 14 Fix  $g \in C_c^{\infty}(\mathbb{R}^d)$  and set 15 $\xi_t \stackrel{\text{def}}{=} \int_{x \in \mathbb{R}^d} w(t, x) g(x) \mu_{\theta}(x) \, dx = \langle f, P_t^{\theta} g \rangle_{\theta}$ 16 17 for all t > 0. Clearly, 18  $\lim_{t \searrow 0} \xi_t = \int_{x \in \mathbb{R}^d} f(x) g(x) \mu_{\theta}(x) \, dx.$ 19 20 Secondly,  $^{21}$  $\dot{\xi}_t = \langle f, (P_t^{\theta}(\mathscr{L}_{\theta}g)) \rangle_{\theta}$ 22  $= \langle J, (x_t (\sim_{\theta} g)) \rangle_{\theta}$ =  $\langle S_t^{\theta} f, \mathscr{L}_{\theta} g \rangle_{\theta}$ =  $\int_{x \in \mathbb{R}^d} w(t, x) \mu_{\theta}(x) (\mathscr{L}_{\theta} g)(x) dx$ 23 24  $^{25}$ 26  $= \left| \sum_{\sigma \in \mathbb{T}^d} (\tilde{\mathscr{L}}^*_{\theta} w)(t, x) g(x) \mu_{\theta}(x) \, dx. \right|$ 27 28 Collecting things together, we get the result. 29 An important result which will form the basis for our averaging estimates is the following. 30 31 There are a K > 0 and a  $\nu > 0$  such that, for all t > 0, Lemma 3.3. 32  $\|P^{\theta}_{t}f - \langle f, \mathbf{1} \rangle_{\theta} \mathbf{1}\|_{\theta} < Ke^{-\nu t} \|f\|_{\theta}$ 33 34 for all  $f \in L^2(\theta)$  and all  $\theta \in S$ . 35 36 Proof. This is Proposition 4.3 of [7]. 37 This gives us our central averaging estimate (the proof of which is also fairly standard). 38 39 **PROPOSITION** 3.4. There are a K > 0 and a  $\nu > 0$  such that 40  $\|S^{\theta}_t f\|_{\theta} < K e^{-\nu t} \|f\|_{\theta}$ 4142for all  $\theta \in S$ , t > 0, and  $f \in C_c(\mathbb{R}^d)$  such that  $\langle f, \mathbf{1} \rangle_{\theta} = 0$ . 43 44 *Proof.* Fix  $g \in C_c^{\infty}(\mathbb{R}^d)$ . Then, since  $\langle f, \mathbf{1} \rangle_{\theta} = 0$ , 45 $\langle S^{\theta}_{t}f,g\rangle_{\theta} = \langle f,P^{\theta}_{t}g\rangle_{\theta} - \langle f,P^{\theta}_{t}g-\langle g,\mathbf{1}\rangle_{\theta}\mathbf{1}\rangle_{\theta},$ 46

| 01       | SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 02       | $ \langle S_t^{\theta} f, g \rangle_{\theta}  \le K e^{-\nu t}   f  _{\theta}   g  _{\theta}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 03       | Take $a = S^{\theta} f$ and the claim follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 04       | Take $y = b_t j$ , and the claim follows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 05       | To proceed, we make the decomposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 05       | $u^{\varepsilon}(t, x, \theta) = v^{\varepsilon}(t, \theta) + \Phi^{\varepsilon}(t, x, \theta) + R^{\varepsilon}(t, x, \theta),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 08       | whore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 09       | where $\frac{1}{\sqrt{2} * \pi \varepsilon} \left( \frac{1}{\sqrt{2} * \pi \varepsilon} \left( \frac{1}{\sqrt{2} * \pi \varepsilon} \right) \left( \frac{1}{\sqrt{2} * \pi \varepsilon} \left( \frac{1}{\sqrt{2} * \pi \varepsilon} \right) \left( $ |          |
| 10       | $a\Psi^{\epsilon}(t,x,\theta) = \mathop{\mathcal{Z}}_{\theta}\Psi^{\epsilon}(t,x,\theta)  at + \{(\mathcal{Q} \ v)(t,x,\theta) - (\mathcal{Q} \ v)(t,\theta)\}  at$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 11       | $+ v^{\varepsilon}(t, \theta) \{h(x, \theta) - \overline{h}(\theta)\} h(X_t^{\varepsilon}, \Theta_t^{\varepsilon})^T dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 12       | $+ v^{\varepsilon}(t, 	heta) \{h(x, 	heta) - \overline{h}(	heta)\}^T dV_t,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 13       | $\Phi^{arepsilon}(0,x) =  ho(x,	heta) - ar{ ho}(	heta),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 14       | $dR^{arepsilon}(t,x,	heta) = rac{1}{2} \widetilde{\mathscr{L}}^{*}_{	heta} R^{arepsilon}(t,x,	heta)  dt + \widetilde{\mathscr{Q}}^{*} R^{arepsilon}(t,x,	heta)  dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.4)    |
| 15       | $\varepsilon$<br>+ $B^{\varepsilon}(t, r, \theta)h(r, \theta)h(X^{\varepsilon}, \Theta^{\varepsilon})^{T} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.4)    |
| 17       | $= D^{\varepsilon}(t, x, 0)h(x, 0)h(x, 0, t) = \tilde{Q}^{*} \Phi^{\varepsilon}(t, x, 0) dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 18       | $+ \pi (t, x, \theta)h(x, \theta)  av_t + z  \Psi (t, x, \theta)  at$ $+ \Phi^{\varepsilon}(t, x, \theta)h(x, \theta)h(x, \xi)  b(X^{\varepsilon}, \Omega^{\varepsilon})T  dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 19       | $+ \Psi^{\varepsilon}(t, x, \theta) h(x, \theta) h(X_{t}, \Theta_{t})^{\varepsilon} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 20       | $+\Phi^{c}(t,x,\theta)h(x,\theta)^{T} dV_{t},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 21       | $R^{\varepsilon}(0,x)=0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 22       | We want to show that $\Phi^{\varepsilon}$ is small since it reflects an averaging correction. We will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | then use |
| 23       | standard SPDE estimates to show that $R^{\circ}$ , which is driven by $\Phi^{\circ}$ , is also small.<br>Let us further split $\Phi^{\varepsilon}$ into several parts, writing $\Phi^{\varepsilon} - \sum^{4} \Phi^{\varepsilon}$ where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 24       | Even us further split $\Psi$ into several parts, where $\Delta \Phi \varepsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 25       | $rac{\partial \Psi_1}{\partial t}(t,x,	heta) = rac{1}{arepsilon} \widetilde{\mathscr{L}}^*_	heta \Phi_1^arepsilon(t,x,	heta),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 20       | $\Phi_1^arepsilon(0,x,	heta)= ho(x,	heta)-ar ho(	heta),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 28       | $\partial \Phi^{\varepsilon}$ 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 29       | $\frac{\partial \Psi_2}{\partial t}(t,x,\theta) = \frac{1}{\varepsilon} \tilde{\mathscr{L}}_{\theta}^* \Phi_2^{\varepsilon}(t,x,\theta) + \{ (\tilde{\mathscr{Q}}^*v)(t,x,\theta) - (\tilde{\mathscr{Q}}^*v)(t,\theta) \},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 30       | $\Phi_2^{\varepsilon}(0, x, \theta) = 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 31       | $\partial \Phi^{\varepsilon}$ 1 ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3.5)    |
| 32       | $\frac{\varepsilon^{-3}}{\partial t}(t,x,\theta) = \frac{\varepsilon}{\varepsilon} \mathscr{L}_{\theta}^{*} \Phi_{3}^{\varepsilon}(t,x,\theta) + v^{\varepsilon}(t,\theta) \{h(x,\theta) - h(\theta)\} h(X_{t}^{\varepsilon},\Theta_{t}^{\varepsilon})^{T},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 34       | $\Phi_3^{\varepsilon}(0, x, \theta) = 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 35       | $\mathbf{I}_{\mathbf{x}}(t, 0) = \frac{1}{2} \left( \tilde{a}^* \mathbf{x} \tilde{c}(t, 0) + \tilde{c}(t, 0) \left( 1 - 0 \right) - \tilde{\mathbf{x}}(0) \right)^T \mathbf{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 36       | $a\Phi_{4}^{\varepsilon}(t,x,\theta) = \frac{-\mathcal{L}_{\theta}}{\varepsilon} \Phi_{4}^{\varepsilon}(t,x,\theta) + v^{\varepsilon}(t,\theta) \{h(x,\theta) - h(\theta)\}^{\varepsilon} dV_{t},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 37       | $\Phi_4^{\varepsilon}(0, x, \theta) = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 38<br>39 | Let us start to bound the various terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 40       | <b>LEMMA 3.5</b> For each $t > 0$ we have that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 41       | $ \begin{array}{c} \text{Lemma 5.5.}  \text{For each } i > 0, \text{ we have that} \\ \hline \\ \hline \\ \hline \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 42<br>43 | $\lim_{\varepsilon \searrow 0} \max_{\theta \in S} \mathbb{E} \left[ \int_{x \in \mathbb{R}^d}  \Phi_1^{\varepsilon}(t, x, \theta) ^2 \mu_{\theta}(x)  dx \right] = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 44       | Proof. For convenience, define                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 45       | $\check{o}(x,\theta) \stackrel{\text{def}}{=} o(x,\theta) = \bar{o}(\theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 46       | p(x, v) - p(x, v) - p(v).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |

01 By definition,  $\langle \check{\rho}(\cdot, \theta), \mathbf{1} \rangle_{\theta} = 0$ . We then have that 0.2  $\Phi_1^{\varepsilon}(t, x, \theta) = (S_{t/\varepsilon}^{\theta} \check{\rho}(\cdot, \theta))(x),$ 03 04 $\mathbf{SO}$ 05  $\|\Phi^{\varepsilon}(t,\cdot)\|_{\theta} < K e^{-\nu t/\varepsilon} \|\check{\rho}(\cdot,\theta)\|_{\theta}.$ 06 This gives the claimed result. 07 08 Before proceeding, we need some uniform bounds on  $v^{\varepsilon}$ . 09 10 LEMMA 3.6. For each t > 0, we have that 11  $\sup_{\substack{\varepsilon \in (0,1) \\ \theta \in S \\ 0 < \varepsilon < \varepsilon}} \mathbb{E}[|v^{\varepsilon}(s,\theta)|^2] < \infty.$ 1213 14 15Proof. Define 16  $V^{\varepsilon}(t) \stackrel{\text{def}}{=} \sum_{\theta \in G} (v^{\varepsilon}(t,\theta))^2.$ 17 18 We have that 19  $dV^{\varepsilon}(t) = 2\sum_{\theta, \theta' \in S} v^{\varepsilon}(t, \theta) \bar{q}_{\theta', \theta} v^{\varepsilon}(t, \theta') dt + 2\sum_{\theta \in S} \bar{h}(\theta) (v^{\varepsilon}(t, \theta))^2 dY_t^{\varepsilon} + \sum_{\theta \in S} (\bar{h}(\theta) v^{\varepsilon}(t, \theta))^2 dt.$ 20  $^{21}$ 22 Define now 23 $Q \stackrel{\text{def}}{=} \sup \left\{ \sum_{\theta, \theta' \in S} \bar{q}_{\theta, \theta'} f(\theta) f(\theta') : f \in B(S), \sum_{\theta \in S} f^2(\theta) = 1 \right\};$ 24  $^{25}$ then  $Q < \infty$ . Thus, 2627  $\mathbb{E}[V^{\varepsilon}(t)] \leq \sum_{\alpha=\sigma} \bar{\rho}(\theta)^2 + \{2Q+8\|h\|_B\}K \int_{s=0}^t \mathbb{E}[V^{\varepsilon}(s)] \, ds.$ 28 29 Gronwall's inequality then implies the claim. 30 31 LEMMA 3.7. For each t > 0, we have that 32  $\lim_{\varepsilon \to 0} \sup_{\theta \in S} \mathbb{E}\left[ \int_{-\varepsilon \mathbb{R}^d} |\Phi_2^{\varepsilon}(t, x, \theta)|^2 \mu_{\theta}(x) \, dx \right] = 0.$ 33 34 35 *Proof.* Let us start by writing 36  $(\tilde{\mathscr{Q}}^*v^{\varepsilon})(t,x,\theta) - (\bar{\mathscr{Q}}^*v^{\varepsilon})(t,\theta) = \sum_{\theta' \in S} \check{q}_{\theta',\theta}(x)v^{\varepsilon}(t,\theta'),$ 37 38 39 where 40  $\check{q}_{\theta',\theta}(x) \stackrel{\text{def}}{=} \frac{\mu_{\theta'}(x)}{\mu_{\theta}(x)} q_{\theta',\theta}(x) - \bar{q}_{\theta',\theta}$ 4142for all  $\theta$  and  $\theta'$  in S and all  $x \in \mathbb{R}^d$ . Note that  $\langle \check{q}_{\theta',\theta}, \mathbf{1} \rangle_{\theta} = 0$  for all  $\theta$  and  $\theta'$  in S. We then have 43 that 44  $\Phi_2^{\varepsilon}(t, x, \theta) = \sum_{q_{\ell} \subset S} \int_{s=0}^t (S_{(t-s)/\varepsilon}^{\theta} \check{q}_{\theta', \theta})(x) v^{\varepsilon}(s, \theta') \, ds.$ 4546Marked Proof Ref: 53180 jcm2010-029 5 October 2011

01 Thus. 02  $\|\Phi_2^{\varepsilon}(t,\cdot,\theta)\|_{\theta} \le K \sum_{\alpha_{\ell}=\alpha} \int_{s=0}^t e^{-\nu(t-s)/\varepsilon} \|\check{q}_{\theta',\theta}\|_{\theta} |v^{\varepsilon}(s,\theta')| \, ds$ 03 04 $\leq K\varepsilon \sum_{\theta' \in S} \|\check{q}_{\theta,\theta'}\| \int_{s=0}^{t/\varepsilon} e^{-\nu s} |v^{\varepsilon}(t-s\varepsilon,\theta')| \, ds.$ 05 06 07 The claim follows. 08 09 Let us next define the function 10  $\check{h}(x,\theta) \stackrel{\text{def}}{=} h(x,\theta) - \bar{h}(\theta); \quad x \in \mathbb{R}^d, \, \theta \in S;$ 11 from (2.2), we have that  $\langle \check{h}_j(\cdot, \theta), \mathbf{1} \rangle_{\theta} = 0$  for all  $j \in \{1, 2, \dots, n\}$ . 12The bound on  $\Phi_3^{\varepsilon}$  follows from arguments similar to those of Lemma 3.7. 13 14 For each t > 0, we have that Lemma 3.8. 15  $\lim_{\varepsilon \searrow 0} \max_{\theta \in S} \mathbb{E} \left[ \int_{x \in \mathbb{R}^d} |\Phi_3^{\varepsilon}(t, x, \theta)|^2 \mu_{\theta}(x) \right] dx = 0.$ 16 17 18 Proof. We have that 19 20  $\Phi_3^{\varepsilon}(t,x,\theta) = \sum_{i=1}^n \int_{s=0}^t (S_{(t-s)/\varepsilon}^{\theta}\check{h}_j)(x)h_j(X_s^{\varepsilon},\Theta_s^{\varepsilon})v^{\varepsilon}(s,\theta) \, ds.$ 21 22 Thus, 23  $\|\Phi_3^{\varepsilon}(t,\cdot,\theta)\|_{\theta} \leq \sum_{i=1}^n \int_{s=0}^t \|S_{(t-s)/\varepsilon}^{\theta}\check{h}_j\| |h_j(X_s^{\varepsilon},\Theta_s^{\varepsilon})| |v^{\varepsilon}(s,\theta)| \, ds$ 24  $^{25}$ 26  $\leq K \sum_{i=1}^{n} \int_{s=0}^{t} e^{-\nu(t-s)/\varepsilon} \|\check{h}_{j}\|_{\theta} |h_{j}(X_{s}^{\varepsilon}, \Theta_{s}^{\varepsilon})| |v^{\varepsilon}(s, \theta)| \, ds$ 27 28  $\leq K\varepsilon \sum_{i=1}^{n} \|\check{h}_{j}\|_{\theta} \int_{s=0}^{t} e^{-\nu s} |h_{j}(X_{t-s\varepsilon}^{\varepsilon}, \Theta_{t-s\varepsilon}^{\varepsilon})| |v^{\varepsilon}(t-s\varepsilon, \theta)| \, ds.$ 29 30 31 This gives us the result. 32 33 The bound on  $\Phi_4^{\varepsilon}$  follows from similar arguments once we use Ito's isometry. 34 35 For each t > 0, we have that Lemma 3.9. 36  $\lim_{\varepsilon \searrow 0} \sup_{\theta \in S} \mathbb{E} \left[ \int_{x \in \mathbb{P}^d} |\Phi_4^{\varepsilon}(t, x, \theta)|^2 \mu_{\theta}(x) \, dx \right] = 0.$ 37 38 39 Proof. We have that 40  $\Phi_4^{\varepsilon}(t,x,\theta) = \sum_{i=0}^n \int_{s=0}^t (S_{(t-s)/\varepsilon}^{\theta}\check{h}_j)(x)v^{\varepsilon}(s,\theta) \, dV_s^j.$ 41 4243 The Ito isometry thus gives us that 44  $\mathbb{E}[\|\Phi_4^{\varepsilon}(t,\cdot,\theta)\|_{\theta}^2] \le \sum_{i=1}^n \int_{s=0}^t \|S_{(t-s)/\varepsilon}^{\theta}\check{h}_j\|^2 \mathbb{E}[|v^{\varepsilon}(s,\theta)|^2] \, ds$  $^{45}$ 46

$$\leq K^{2} \sum_{j=1}^{n} \int_{s=0}^{t} e^{-2\nu(t-s)/\varepsilon} \|\tilde{h}_{j}\|_{\theta} \mathbb{E}[|v^{\varepsilon}(s,\theta)|^{2}] ds$$

$$\leq K\varepsilon \sum_{j=1}^{n} \|\tilde{h}_{j}\|_{\theta}^{2} \int_{s=0}^{t/\varepsilon} e^{-2\nu s} \mathbb{E}[|v^{\varepsilon}(t-s\varepsilon,\theta)|^{2}] ds.$$
The result follows.  $\square$ 
Summarizing, we have that  $\Phi^{\varepsilon}$  is small.
LEMMA 3.10. For each  $t > 0$ , we have that
$$\lim_{\varepsilon \searrow 0} \sup_{\theta \in S} \mathbb{E}\left[\int_{x \in \mathbb{R}^{d}} |\Phi^{\varepsilon}(t,x,\theta)| dx dt\right] = 0.$$
Proof. Collect Lemmas 3.5, 3.7, 3.8, and 3.9.
$$\exists 3.1. \text{ Proof of Lemma 3.1} \\ \text{By standard SPDE methods [18], we have that}$$

$$\sum_{\theta \in S} \mathbb{E}[||R^{\varepsilon}(t,\cdot,\theta)||_{\theta}^{2}] \leq \frac{2}{\varepsilon} \sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{L}\theta R^{\varepsilon}(s,\cdot,\theta), R^{\varepsilon}(s,\cdot,\theta)\rangle_{\theta}] ds$$

$$+ 2 \sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), R^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(\cdot,\theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}] ds$$

$$+ 2 \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{1\leq j \leq n} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}h_{j}(X^{\varepsilon}_{s},\Theta^{\varepsilon}_{s})] ds$$

$$+ 2 \sum_{1\leq j \leq n} \int_{s=0}^{t} \mathbb{E}[\langle \mathscr{R}^{\varepsilon}(s,\cdot,\theta), \Phi^{\varepsilon}(s,\cdot,\theta)h_{j}(\cdot,\theta)\rangle_{\theta}] ds$$

$$+ 2$$

and, hence, since  $\mu_{\theta}$  is an invariant distribution,

$$\langle \mathscr{L}_{\theta}f, f \rangle_{\theta} = \int_{x \in \mathbb{R}^d} f(x) \mathscr{L}_{\theta}f(x) \mu_{\theta}(x) \, dx \le \frac{1}{2} \int_{x \in \mathbb{R}^d} (\mathscr{L}_{\theta}f^2)(x) \mu_{\theta}(x) \, dx = 0.$$

<sup>43</sup> Let us also define

<sup>44</sup>  
<sup>45</sup>  
<sup>46</sup>

$$Q \stackrel{\text{def}}{=} \sup \left\{ \sum_{\theta, \theta' \in S} q_{\theta, \theta'}(x) f(\theta) g(\theta') : x \in \mathbb{R}^d, f, g \in B(S), \sum_{\theta \in S} f^2(\theta) = \sum_{\theta \in S} g^2(\theta) = 1 \right\};$$

$$\begin{split} & \text{then } Q < \infty. \text{ Hence,} \\ & \sum_{\theta \in S} \mathbb{E}[\|R^{\varepsilon}(t,\cdot,\theta)\|_{\theta}^{2}] \\ & \leq 2Q \sum_{\theta' \in S} \int_{s=0}^{t} \mathbb{E}[\|R^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds \\ & + 2\left\{\sum_{1 \leq j \leq n} \|h_{j}\|_{B}^{2}\right\} \sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\|R^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds \\ & + 2\left\{\sum_{1 \leq j \leq n} \|h_{j}\|_{B}^{2}\right\} \sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\|R^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds \\ & + Q\left\{\sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\|R^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds + \sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\|\Phi^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds\right\} \\ & + \left\{\sum_{1 \leq j \leq n} \|h_{j}\|_{B}^{2}\right\} \left\{\sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\|R^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds + \sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\|\Phi^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds\right\} \\ & + 2\left\{\sum_{1 \leq j \leq n} \|h_{j}\|_{B}^{2}\right\} \int_{s=0}^{t} \left\{\sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\|R^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds + \sum_{\theta \in S} \int_{s=0}^{t} \mathbb{E}[\|\Phi^{\varepsilon}(s,\cdot,\theta)\|_{\theta}^{2}] \, ds\right\}. \\ & \text{Apply Gronwall's inequality and use Lemma 3.10 to bound } R^{\varepsilon}. \text{ Combining things together, the claim follows.} \\ & 4. Proof of Theorem 2.1 \\ & \text{We finally want to return to our analysis of } \pi_{t}^{\varepsilon}. \text{ We want to use Lemma 3.1 to show that } \pi_{t}^{\varepsilon} \\ & and \pi_{t}^{\varepsilon} \text{ are close. To start, define} \\ & \overline{V^{\varepsilon}(t)} \stackrel{\text{def}}{=} \sum_{\theta \in S} v^{\varepsilon}(t, \theta). \\ & \text{From standard calculations, we have that } v^{\varepsilon}(t, \theta) \geq 0 \text{ for all } t > 0 \text{ and } \theta \in S. \\ \end{array}$$

LEMMA 4.1. For all  $t \ge 0$ ,  $\varepsilon \in (0, 1)$ , and L > 0,  $^{29}$ 

30 31  $^{32}$ 

34

28

$$d_{\mathscr{P}(S)}(\pi_t^{\varepsilon}, \bar{\pi}_t^{\varepsilon}) \le \frac{2}{V^{\varepsilon}(t)} \sum_{\theta \in S} \sqrt{\int_{x \in \mathbb{R}^d} |\tilde{u}^{\varepsilon}(t, x, \theta) - v^{\varepsilon}(t, \theta)|^2 \mu_{\theta}(x) \, dx} \tag{4.1}$$

if  $\bar{V}^{\varepsilon}(t) > 0$ . 33

*Proof.* For each  $t \ge 0$  and  $\varepsilon > 0$ , define the random  $\sigma$ -finite measures  $\pi_t^{\circ,\varepsilon}$  and  $\bar{\pi}_t^{\circ,\varepsilon}$  on  $(\mathbb{R}^d \times S, \mathscr{B}(\mathbb{R}^d \times S))$  as 3536

$$\pi_t^{\circ,\varepsilon}(A) \stackrel{\text{def}}{=} \sum_{\theta \in A} \int_{x \in \mathbb{R}^d} \tilde{u}^{\varepsilon}(t, x, \theta) \mu_{\theta}(x) \, dx,$$

$$\bar{\pi}_t^{\circ,\varepsilon}(A) \stackrel{\text{def}}{=} \sum_{\theta \in A} v^{\varepsilon}(t,\theta) = \sum_{\theta \in A} \int_{x \in \mathbb{R}^d} v^{\varepsilon}(t,\theta) \mu_{\theta}(x) dx$$

for all  $A \subset S$ . Then 42

$$\begin{array}{l} \overset{_{43}}{}_{_{44}} & \pi_t^{\varepsilon}(A) - \bar{\pi}_t^{\varepsilon}(A) = \frac{\pi_t^{\circ,\varepsilon}(A)}{\pi_t^{\circ,\varepsilon}(S)} - \frac{\bar{\pi}_t^{\circ,\varepsilon}(A)}{\bar{\pi}_t^{\circ,\varepsilon}(S)} \\ \overset{_{45}}{}_{_{46}} & = \frac{\pi_t^{\circ,\varepsilon}(A)}{\pi_t^{\circ,\varepsilon}(S)\bar{\pi}_t^{\circ,\varepsilon}(S)} \{\bar{\pi}_t^{\circ,\varepsilon}(S) - \pi_t^{\circ,\varepsilon}(S)\} + \frac{1}{\bar{\pi}_t^{\circ,\varepsilon}(S)} \{\bar{\pi}_t^{\circ,\varepsilon}(A) - \pi_t^{\circ,\varepsilon}(A)\}. \end{array}$$

01 For any  $A' \subset S$ . 0.2  $|\pi_t^{\circ,\varepsilon}(A') - \bar{\pi}_t^{\circ,\varepsilon}(A')| = \left| \sum_{\alpha \in \mathcal{A}^d} \{ \tilde{u}^{\varepsilon}(t,x,\theta) - v^{\varepsilon}(t,\theta) \} \mu_{\theta}(x) \, dx \right|$ 03 04  $\leq \sum_{\alpha, \varepsilon} \left| \int_{x \in \mathbb{R}^d} \{ \tilde{u}^{\varepsilon}(t, x, \theta) - v^{\varepsilon}(t, \theta) \} \mu_{\theta}(x) \, dx \right|$ 05 06 07  $\leq \sum \sqrt{\int_{\pi \in \mathbb{D}^d} |\tilde{u}^{\varepsilon}(t, x, \theta) - v^{\varepsilon}(t, \theta)|^2 \mu_{\theta}(x) \, dx}.$ 08 09 Of course,  $\bar{\pi}_t^{\circ,\varepsilon}(S) = \bar{V}^{\varepsilon}(t)$ . The claim follows. 10 11 Proof of Theorem 2.1. From Lemma 3.1, it suffices to show that 12 $\sup_{\varepsilon \in (0,1)} \mathbb{E} \left| \frac{1}{(\bar{V}^{\varepsilon}(t))^2} \right| < \infty.$ 13 (4.2)14 In fact, we have that 15 $d\bar{V}^{\varepsilon}(t) = \left\{\sum \bar{h}(\theta)v^{\varepsilon}(t,\theta)\right\} dY_t^{\varepsilon}.$ 16 17 18 Of course,  $\bar{V}^{\varepsilon}(0) = 1$ . For each  $n \in \mathbb{N}$ , define 19  $\tau_n \stackrel{\text{def}}{=} \inf \left\{ t \ge 0 : \bar{V}^{\varepsilon}(t) \le \frac{1}{n} \right\}.$ 20 21Define  $\tau \stackrel{\text{def}}{=} \lim_{n \to \infty} \tau_n = \inf\{t \ge 0 : \bar{V}^{\varepsilon}(t) = 0\}$ . For  $t \in [0, \tau)$ , define 22 23 $a(t) \stackrel{\text{def}}{=} \frac{\sum_{\theta \in S} \bar{h}(\theta) v^{\varepsilon}(t,\theta)}{\sum_{\theta \in S} v^{\varepsilon}(t,\theta)};$ 24  $^{25}$ since the  $v^{\varepsilon}(t,\theta)$  are non-negative, we have that 26 $\|a(t)\|_{\mathbb{R}^n} \le \sup_{\theta \in S} \|\bar{h}(\theta)\|_{\mathbb{R}^n}.$ (4.3)27 28 For every  $n \in \mathbb{N}$ , we have that  $^{29}$  $\bar{V}^{\varepsilon}(t \wedge \tau_n) = \exp\left[\int_{-\infty}^{t \wedge \tau_n} a(s)^T h(X_s^{\varepsilon}, \Theta_s^{\varepsilon}) \, ds + \int_{-\infty}^{t \wedge \tau_n} a(s)^T \, dV_s - \frac{1}{2} \int_{-\infty}^{t \wedge \tau_n} \|a(s)\|^2 \, ds\right].$ 30 31 32 Letting  $n \to \infty$ , we get that 33  $\bar{V}^{\varepsilon}(t \wedge \tau) = \exp\left[\int_{-\infty}^{t \wedge \tau} a(s)^T h(X_s^{\varepsilon}, \Theta_s^{\varepsilon}) \, ds + \int_{-\infty}^{t \wedge \tau} a(s)^T \, dV_s - \frac{1}{2} \int_{-\infty}^{t \wedge \tau} \|a(s)\|^2 \, ds\right].$ 34 35 Since the exponential term is finite thanks to (4.3), we must have that  $\tau > t$ . Thus, 36  $\frac{1}{(\bar{V}^{\varepsilon}(t))^2} = \exp\left[-2\int_{-\infty}^{t\wedge\tau} a(s)^T h(X_s^{\varepsilon},\Theta_s^{\varepsilon})\,ds - 2\int_{-\infty}^{t\wedge\tau} a(s)^T\,dV_s + \int_{-\infty}^{t\wedge\tau} \|a(s)\|^2\,ds\right].$ 37 38 This implies (4.2), completing the proof. 39 40 41 5. A numerical example 42We consider a simple system in a continuous–discrete set-up; the fast variable  $X^{\varepsilon} \in \mathbb{R}^2$  is given 43 as a continuous process 44  $dX_t^{\varepsilon} = -\frac{1}{\varepsilon} \Lambda_{\Theta_t^{\varepsilon}} (X_t^{\varepsilon} - \Theta_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} dW_t, \quad X_0^{\varepsilon} = \xi,$ 4546



while the slow variable  $\Theta^{\varepsilon}$  is a jump process with a finite state space  $S = \{(2, 2), (-2, 2), (-2, -2), (2, -2)\}$ . The matrix  $\Lambda_{\theta}$  is given for each  $\theta \in S$  as

$$\Lambda_{(2,2)} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & -2\\ 2 & 1 \end{pmatrix}, \quad \Lambda_{(-2,2)} \stackrel{\text{def}}{=} \begin{pmatrix} 2 & -2\\ 2 & 2 \end{pmatrix}, \Lambda_{(-2,-2)} \stackrel{\text{def}}{=} \begin{pmatrix} 3 & -2\\ 2 & 3 \end{pmatrix}, \quad \Lambda_{(2,-2)} \stackrel{\text{def}}{=} \begin{pmatrix} 4 & -2\\ 2 & 4 \end{pmatrix},$$

<sup>30</sup> and the generator of  $\Theta^{\varepsilon}$  is defined as

$$Q(x) \stackrel{\text{def}}{=} \begin{pmatrix} -\|x\|^2 & \|x\|^2 & 0 & 0\\ \|x\|^2 & -2\|x\|^2 & 0 & \|x\|^2\\ \|x\|^2 & 0 & -2\|x\|^2 & \|x\|^2\\ 0 & 0 & \|x\|^2 & -\|x\|^2 \end{pmatrix} \times 10^{-5},$$

<sup>35</sup><sub>36</sub> where  $||x|| \stackrel{\text{def}}{=} \sqrt{x_1^2 + x_2^2}$ .

In this example, observations are made at equally spaced discrete points as follows:

 $Y_{t_k}^{\varepsilon} = \sin X_{t_k}^{\varepsilon} + B_{t_k},$ 

37 38 39

where  $B_{t_k}$  is a standard Gaussian white noise sequence.

<sup>40</sup> Figure 1(a) and (b) show typical plots for the fast process,  $X_t^{\varepsilon}$ , of the above multiscale hybrid <sup>41</sup> system and the observation process  $Y_t^{\varepsilon}$ , respectively. Figure 1(c) shows the evolution of the <sup>42</sup> slow process,  $\Theta^{\varepsilon}$ , in time, where the original state *S* is mapped into {1, 2, 3, 4}. To show the <sup>43</sup> validity and efficiency of the homogenized filter, we applied the particle filter (PF) [5] and the <sup>44</sup> homogenized hybrid particle filter (HHPF) [8, 17] algorithms for a comparison. Figure 2(a) <sup>45</sup> and (b) show maximum a posteriori (MAP) estimates with error bars representing one standard <sup>46</sup> deviation, where 400 particles are used.



We also compare the errors for PF and HHPF in Table 1. The errors are obtained from a  $^{27}$  0–1 error estimate given by

28 29 30

37 38

39

40

$$\mathbb{E}\mathbf{1}_{\Theta_{t_k}^{\varepsilon}\neq\widehat{\Theta}_k^{\{\cdot\}}}\approx \frac{1}{T}\sum_{l=1}^{T}\mathbf{1}_{\Theta_{t_k}^{\varepsilon}\neq\widehat{\Theta}_k^{\{\cdot\}}},$$

where  $\widehat{\Theta}_{k}^{\text{PF}}$  and  $\widehat{\Theta}_{k}^{\text{HHPF}}$  are MAP estimates at a discretized point k obtained respectively from PF and HHPF algorithms and  $\Theta_{t_{k}}^{\varepsilon}$  represents the value of  $\Theta^{\varepsilon}$  at k. The values in Table 1 are based on 50 Monte Carlo simulations. The mean times taken for these simulations with Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors are given in the parentheses (the unit is 10<sup>3</sup> seconds). While the errors for both algorithms are comparable, the time taken for HHPF is much less that that of PF.

Acknowledgements. The third author would like to thank the Departments of Mathematics and Statistics of Stanford University for their hospitality in the Spring of 2010 during

| TABLE 1. Errors of PF and HHPF. |                    |               |               |               |             |
|---------------------------------|--------------------|---------------|---------------|---------------|-------------|
| Algorithm/N                     | 50                 | 100           | 200           | 400           | 800         |
| PF                              | 0.2246(0.26)       | 0.2061(0.52)  | 0.2026(1.07)  | 0.1972(2.23)  | 0.1937 (4.8 |
| HHPF                            | 0.2607 ( $0.007$ ) | 0.2187~(0.02) | 0.2036~(0.07) | 0.2010~(0.23) | 0.1970 (0.8 |
| -                               |                    |               |               |               |             |



|    | 01<br>02 | a sa<br>1-06 | bbatical stay. The first author acknowledges the support from OSD/AFOSR grant 9550-05-<br>513. The second author acknowledges the support from NSF grant DMS 0604863, ARO grant                        |
|----|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 03       | W9           | 11NF-07-1-0044, and OSD/AFOSR grant 9550-05-1-0613. The third author acknowledges support from AFOSR grant FA0550.08.1.0206 and NSF grant DMS 0604240 during the                                       |
|    | 04       | prei         | paration of this work.                                                                                                                                                                                 |
|    | 05       | 1 1          |                                                                                                                                                                                                        |
|    | 05       |              |                                                                                                                                                                                                        |
|    | 08       |              |                                                                                                                                                                                                        |
|    | 09       |              | References                                                                                                                                                                                             |
|    | 10       | 1.           | A. BAIN and D. CRISAN, Fundamentals of stochastic filtering, Stochastic Modelling and Applied Probability                                                                                              |
|    | 11       | 2.           | 60 (Springer, New York, 2009).<br>V. E. BENEŠ, 'Exact finite-dimensional filters for certain diffusions with nonlinear drift', <i>Stochastics</i> 5                                                    |
|    | 12       | 3.           | (1981) 65–92.<br>A. CRUDU, A. DEBUSSCHE and O. RADULESCU, 'Hybrid stochastic simplifications for multiscale gene                                                                                       |
| Q1 | 13       |              | networks', BMC Syst. Biol. 3 (2009) no. 89,.                                                                                                                                                           |
|    | 14       | 4.           | F. DAUM, 'Exact finite-dimensional nonlinear filters', <i>IEEE Trans. Automat. Control</i> 31 (1986) no. 7, 616–622.                                                                                   |
| Q2 | 16       | 5.           | A. DOUCET, 'On sequential simulation-based methods for Bayesian filtering', <i>Technical report</i> (Department of Engineering, University of Cambridge, Cambridge, UK, 1998).                         |
|    | 17       | 0.           | Trans. Automat. Control 46 (2001) no. 2, 179–190.                                                                                                                                                      |
|    | 18       | 7.           | M. FUHRMAN, 'Hypercontractivity properties of nonsymmetric Ornstein–Uhlenbeck semigroups in Hilbert spaces', Stoch. Anal. Appl. 16 (1998) no. 2, 241–260.                                              |
|    | 19       | 8.           | D. GIVON, P. STINIS and J. WEARE, 'Variance reduction for particle filters of systems with time scale                                                                                                  |
|    | 20       | 9.           | I. HWANG, H. BALAKRISHNAN and C. TOMLIN, 'State estimation for hybrid systems: applications to aircraft                                                                                                |
|    | 21       | 10.          | tracking', IEE Proc. – Control Theory Appl. 153 (2006) no. 5, 556–566.<br>A. M. IL'IN, B. Z. KHASMINSKII and G. VIN, 'Singularly perturbed switching diffusions: rapid switchings                      |
|    | 23       |              | and fast diffusions', J. Optim. Theory Appl. 102 (1999) no. 3, 555–591.                                                                                                                                |
|    | 24       | 11.          | R. E. KALMAN, 'A new approach to linear filtering and prediction problems', J. Basic Eng. 82 (1960) no. 1, 35–45.                                                                                      |
| 03 | 25       | 12.          | P. KOKOTOVIĆ, H. KHALIL and J. O'REILLY, Singular perturbation methods in control: analysis and design (Society for Industrial Mathematics, 1999)                                                      |
| ųJ | 26       | 13.          | M. MILLER, U. GRENANDER, J. O'SULLIVAN and D. SNYDER, 'Automatic target recognition organized via                                                                                                      |
|    | 27       | 14.          | jump-diffusion algorithms', IEEE Trans. Image Process. 6 (1997) no. 1, 157–174. G. C. PAPANICOLAOU, 'Asymptotic analysis of stochastic equations', Stud. Probab. Theory (1978)                         |
| Q4 | 28       | 1.5          | 111–179.                                                                                                                                                                                               |
|    | 29       | 15.          | J. H. PARK, N. S. NAMACHCHIVAYA and R. B. SOWERS, 'A problem in stochastic averaging of nonlinear filters', Stoch. Dyn. 8 (2008) no. 3, 543–560.                                                       |
|    | 30       | 16.          | J. H. PARK, R. B. SOWERS and N. S. NAMACHCHIVAYA, 'Dimensional reduction in nonlinear filtering',<br>Nonlinearity 23 (2010) 305–324                                                                    |
|    | 31       | 17.          | J. H. PARK, N. S. NAMACHCHIVAYA and H. C. YEONG, Particle filters in a multiscale environment:                                                                                                         |
| Q5 | 32       | 18.          | homogenized hybrid particle filter (HHPF). Under review.<br>B. L. ROZOVSKII, <i>Stochastic evolution systems</i> , Mathematics and its Applications (Soviet Series) 35 (Kluwer                         |
|    | 34       |              | Academic, Dordrecht, 1990) Linear theory and applications to nonlinear filtering, translated from the                                                                                                  |
|    | 35       | 19.          | B. ROZOVSKII, R. BLAZEK and A. PETROV, Interactive banks of Bayesian matched filters, In SPIE                                                                                                          |
|    | 36       |              | Proceedings (Volume 4048): Signal and Data Processing of Small Targets (Orlando, FL, 2000) (ed. O. E. Drummond: SPIE (The International Society for Optical Engineering). Bellingham WA 2000)          |
|    | 37       | 20.          | D. D. SWORDER and J. BOYD, Estimation problems in hybrid systems (Cambridge University Press,                                                                                                          |
|    | 38       | 21.          | Cambridge, UK, 1999).<br>F. VERHULST. Methods and applications of singular perturbations: boundary layers and multiple timescale                                                                       |
|    | 39       |              | dynamics (Springer, Berlin, 2005).                                                                                                                                                                     |
|    | 40       | 22.          | H. WANG, 'Mathematical theory of molecular motors and a new approach for uncovering motor mechanisms', <i>IEE Proc. – Nanobiotechnology</i> 150 (2003) no. 3, 127–133.                                 |
| Q6 | 41       | 23.          | E. WONG and J. B. THOMAS, 'On polynomial expansions of second-order distributions', J. Soc. Ind. Appl. Math. 10 (1962) no. 3, 507–516.                                                                 |
|    | 42       | 24.          | G. YIN and C. ZHU, Hybrid switching diffusions: properties and applications, Stochastic Modelling and                                                                                                  |
|    | 43<br>44 | 25.          | <ul> <li>Appined Probability 53 (Springer, Berlin, 2010).</li> <li>M. ZAKAI, 'On the optimal filtering of diffusion processes', Z. Wahrscheinlichkeitstheorie verw. Geb. 11 (1000) 200, 044</li> </ul> |
|    | 45       | 26.          | Q. ZHANG and G. YIN, 'Nearly-optimal asset allocation in hybrid stock investment models', J. Optim.                                                                                                    |
|    | 46       |              | Theory Appl. 121 (2004) no. 2, 419–444.                                                                                                                                                                |
|    |          |              |                                                                                                                                                                                                        |

| 01<br>02<br>03 | Jun H. Park<br>182 George Street<br>Providence, RI 02912 | Boris Rozovskii<br>182 George Street<br>Providence, RI 02912 |
|----------------|----------------------------------------------------------|--------------------------------------------------------------|
| 04             | USA                                                      | USA                                                          |
| 05             | jun_park@brown.edu                                       | boris_rozovsky@brown.edu                                     |
| 06             |                                                          | v                                                            |
| 07             | Richard B. Sowers                                        |                                                              |
| 08             | Urbana, IL 61801                                         |                                                              |
| 09             | USA                                                      |                                                              |
| 10             | r-sowers@illinois.edu                                    |                                                              |
| 11             |                                                          |                                                              |
| 12             |                                                          |                                                              |
| 14             |                                                          |                                                              |
| 15             |                                                          |                                                              |
| 16             |                                                          |                                                              |
| 17             |                                                          |                                                              |
| 18             |                                                          |                                                              |
| 19             |                                                          |                                                              |
| 20             |                                                          |                                                              |
| 21             |                                                          |                                                              |
| 22             |                                                          |                                                              |
| 23             |                                                          |                                                              |
| 25             |                                                          |                                                              |
| 26             |                                                          |                                                              |
| 27             |                                                          |                                                              |
| 28             |                                                          |                                                              |
| 29             |                                                          |                                                              |
| 30             |                                                          |                                                              |
| 31             |                                                          |                                                              |
| 32             |                                                          |                                                              |
| 33             |                                                          |                                                              |
| 34             |                                                          |                                                              |
| 36             |                                                          |                                                              |
| 37             |                                                          |                                                              |
| 38             |                                                          |                                                              |
| 39             |                                                          |                                                              |
| 40             |                                                          |                                                              |
| 41             |                                                          |                                                              |
| 42             |                                                          |                                                              |
| 43             |                                                          |                                                              |
| 44             |                                                          |                                                              |
| 45             |                                                          |                                                              |

| AUTHOR QUERIES                |                                                                                                                 |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| <b>Q1</b> (p<br>Pleas<br>rang | bage 16)<br>se check that the journal title given in Ref. [3] is OK as set. Also, please give the page<br>e.    |  |
| <b>Q2</b> (p<br>Pleas         | bage 16)<br>se check added organization details in Ref. [5].                                                    |  |
| <b>Q3</b> (p<br>Pleas<br>Matl | bage 16)<br>se confirm the publisher name in Ref. [12]. Maybe "Society for Industrial and Applied<br>hematics"? |  |
| <b>Q4</b> (p<br>Pleas         | se give the volume number in Ref. [14].                                                                         |  |
| <b>Q5</b> (p<br>Pleas         | bage 16)<br>se update Ref. [17], if possible.                                                                   |  |
| <b>Q6</b> (p<br>Refe          | (page 16)<br>rence [23] is not cited in the text. Please cite or remove from the list.                          |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |
|                               |                                                                                                                 |  |