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In this article, we introduce an hp certified reduced basis (RB) method for parabolic
partial differential equations. We invoke a Proper Orthogonal Decomposition (POD)
(in time)/Greedy (in parameter) sampling procedure first in the initial partition of the
parameter domain (h-refinement) and subsequently in the construction of RB approx-
imation spaces restricted to each parameter subdomain (p-refinement). We show that
proper balance between additional POD modes and additional parameter values in
the initial subdivision process guarantees convergence of the approach. We present
numerical results for two model problems: linear convection–diffusion and quadrat-
ically non-linear Boussinesq natural convection. The new procedure is significantly
faster (more costly) in the RB Online (Offline) stage.

Keywords: parabolic partial differential equations; certified reduced basis; a posteri-
ori error estimation; POD/Greedy; hp reduced basis; convection–diffusion; Boussinesq
natural convection

1. Introduction

The certified reduced basis (RB) method is a model-order reduction framework for rapid
evaluation of functional outputs, such as surface temperatures or fluxes, for partial differ-
ential equations (PDEs) that depend on an input parameter vector, for example, related to
geometric factors or material properties. There are four key ingredients to the certified RB
framework:

• Galerkin projection: optimal linear combination of N pre-computed N -degree-of-
freedom ‘truth’ finite element (FE) field snapshots [1,2];

• POD/Greedy sampling: POD (in time)/Greedy (in parameter) [3] optimal selection
and combination of FE field snapshots;

• a posteriori error estimation: rigorous upper bounds for the error in the RB (output)
approximation with respect to the ‘truth’ FE discretization [4,5]; and

• Offline–Online computational decomposition: O(N •)-complexity preprocessing
followed by O(N•)-complexity certified input–output prediction [5,6].

We shall describe each ingredient further in subsequent sections.
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396 J.L. Eftang et al.

We shall assume that the field variable depends smoothly on the parameters. In that
case we can expect, and we can rigorously confirm a posteriori, that N � N ; we can then
furthermore anticipate rapid Online evaluation of the RB output approximation and asso-
ciated RB output error bound. The certified RB method is thus computationally attractive
in two important engineering contexts: ‘real time’, such as parameter estimation and opti-
mal control; ‘many query’, such as multiscale or stochastic simulation. In both instances,
the Offline effort either is unimportant or can be amortized over many input–output eval-
uations. In both instances, rigorous error control without direct appeal to the ‘truth’ is
crucial.

For many problems, the field variable may be quite different in different regions of the
parameter domain, and hence a snapshot from one region may be of little value to the RB
approximation in another region. To exploit this opportunity, we introduce in [7] an hp-RB
method for linear elliptic equations. In the Offline stage, we first adaptively subdivide the
original parameter domain into smaller regions (h-refinement); we then construct individ-
ual RB approximation spaces spanned by snapshots restricted to parameter values within
each of these parameter subdomains (p-refinement). In the Online stage, the RB approxi-
mation associated with any new parameter value is then constructed as a (Galerkin) linear
combination of snapshots from the parameter subdomain that contains the new param-
eter value. The dimension of the local approximation space, and thus the Online cost,
shall be very low: every basis function contributes significantly to the RB approximation.
We note that an alternative ‘multiple bases generation’ procedure is introduced in [8]; a
different ‘interpolation’ approach to parametric reduced order modelling with parameter
subdomains is described in [9].

In this article, we extend the work in [7] to linear and non-linear parabolic equations
through a POD (in time)/Greedy (in parameter) procedure. The POD/Greedy sampling
approach [3] is invoked both in the initial partition of the parameter domain (h-refinement)
and subsequently in the construction of RB approximation spaces restricted to each param-
eter subdomain (p-refinement). Much of the elliptic machinery from [7] extends to the
parabolic case because we only subdivide the parameter (and not the temporal) domain.
The critical new issue for the hp-POD/Greedy algorithm for parabolic problems is proper
balance between additional POD modes and additional parameter values in the initial
subdivision process.

The hp-POD/Greedy procedure was first introduced in the conference proceedings
paper [10]. We extend [10] here in several important ways. First, we introduce an improve-
ment to the algorithm: an additional Offline splitting step that permits direct control of the
Online computational cost. Second, we introduce (for a simple but illustrative case) a new
a priori convergence theory for the initial subdivision process; we show in particular that
the procedure is convergent provided sufficiently many POD modes are included in the RB
spaces. Good convergence of the subdivision process is critical to both Offline and Online
performances. Third, and finally, we extend our considerations to quadratically non-linear
parabolic problems. This class of problems is particularly ‘ripe’ for the hp approach due to
the O(N4) computational cost associated with RB error bound evaluation [11,12]: even a
small reduction in N – the number of RB basis functions – will result in significant Online
computational savings.

We begin in Section 2 with the problem statement(s). In Section 3, we introduce
the hp-RB approximation, the associated RB error bounds and the necessary compu-
tational procedures. In Section 4, we present the hp-POD/Greedy algorithm and the
new a priori convergence theory. Finally, in Section 5, we present numerical results for
two model problems: a linear time-invariant (LTI) convection–diffusion problem and a
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Mathematical and Computer Modelling of Dynamical Systems 397

quadratically non-linear Boussinesq natural convection problem; we focus our discussion
on computational cost and Online economization compared with the standard (p-type) RB
method.

2. Problem statement

We directly consider a discrete-time parametrized parabolic PDE defined over a spatial
domain� ⊂ R

2 for discrete time levels tk = k�t, 0 ≤ k ≤ K; here�t = tf /K, and tf is the
final time. We further introduce a P-dimensional parameter domain D ⊂ R

P and denote by
μ ∈ D a particular parameter value. For a given μ ∈ D, we shall denote the exact solution
to our discrete-time parabolic PDE as uk(μ) ≡ u(tk ,μ), 0 ≤ k ≤ K.

We consider Backward Euler (θ = 1) and Crank–Nicolson (θ = 0.5) temporal dis-
cretization schemes (more generally, we may consider 0.5 ≤ θ ≤ 1); we define uk+θ (μ) ≡
θuk+1(μ)+ (1− θ )uk(μ). The exact formulation reads as follows: for any μ ∈ D, find
uk(μ) ∈ X , 1 ≤ k ≤ K, such that

1

�t
m(uk+1(μ)− uk(μ), v;μ)+ a(uk+θ (μ), v;μ)+ b(uk+θ (μ), uk+θ (μ), v;μ) = f (v;μ), ∀v ∈ X ,

(1)

subject to initial condition u0(μ). In the sequel, we shall always assume zero initial condi-
tions. We then evaluate our output of interest as sk(μ) = �(uk(μ);μ) for 0 ≤ k ≤ K. Here,
X denotes a Sobolev space over � ⊂ R

2; typically (H1
0 (�))d ⊆ X ⊆ (H1(�))d , where

H1(�) = {v : |∇v| ∈ L2(�)}, H1
0 (�) = {v ∈ H1(�) : v|∂� = 0}, where ∂� is the bound-

ary of �, L2(�) is the space of square integrable functions over � and d is the dimension
of the field. (In our exposition d = 1; later, for the Boussinesq problem, d = 3.)

We suppose that X is equipped with an inner product (·, ·)X and induced norm
‖·‖X= (·, ·)1/2

X ; we further denote by (·, ·) the standard L2(�) inner product and by ‖
·‖L2= (·, ·)1/2 the standard L2(�) norm. For any μ ∈ D, m(·, ·;μ) is a coercive and con-
tinuous bilinear form over L2(�), a(·, ·;μ) is a coercive and continuous bilinear form over
X , b(·, ·, ·;μ) is a continuous trilinear form over X , f (·;μ) is an X -bounded linear func-
tional and �(·;μ) is an L2(�)-bounded linear ‘output’ functional. We introduce coercivity
constants

α(μ) ≡ inf
v∈X

a(v, v;μ)

‖ v ‖2
X

, σ (μ) ≡ inf
v∈X

m(v, v;μ)

‖ v ‖2
L2

; (2)

under our assumptions α(μ) > 0 and σ (μ) > 0, respectively, for any μ ∈ D. Note for
b = 0, our problem is linear and coercive.

To develop efficient Offline–Online computational procedures for the RB field approx-
imation, RB output approximation and RB error bound, we shall suppose that all our forms
admit ‘affine’ expansions in functions of μ. Specifically, for any μ ∈ D

a(·, ·;μ) =
Qa∑

q=1

aq(·, ·)	q
a(μ), (3)

where Qa < Q and Q is finite and preferably modest. We suppose that m, b and f admit
similar expansions in at most Q terms. Many problems (including the examples of this
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398 J.L. Eftang et al.

article) admit an affine expansion; for other problems, approximate affine representations
can be developed [13,14].

We now introduce the ‘truth’ spatial discretization of the PDE. We suppose a regular tri-
angulation T N (�) of � and introduce a corresponding high-resolution FE space XN ⊂ X
of dimension N . The truth discretization of Equation (1) reads as follows: for any μ ∈ D,
find uN k(μ) ∈ XN , 1 ≤ k ≤ K, such that

1

�t
m(uN k+1(μ)− uN k(μ), v;μ)+ a(uN k+θ (μ), v;μ)

+ b(uN k+θ (μ), uN k+θ (μ), v;μ) = f (v;μ), ∀v ∈ XN ,
(4)

subject to initial condition uN 0 = 0; then evaluate the truth output approximation as
sN k(μ) = �(uN k(μ);μ) for 0 ≤ k ≤ K. It is this truth FE approximation that we wish
to accelerate by RB treatment. We shall assume that XN is rich enough that the exact
and truth solutions are indistinguishable at the desired level of numerical accuracy. As we
shall observe below, the RB Online computational cost is independent of N , and the RB
approximation is stable as N →∞. We can thus choose N conservatively.

3. hp-RB approximation

For a parameter domain D ⊂ R
P, the hp-RB method serves to construct a hierarchical par-

tition of D into M distinct parameter subdomains VBm ⊂ D, 1 ≤ m ≤ M . Each of these sub-
domains VBm has associated nested RB approximation spaces X1,Bm ⊂, . . . ,⊂ XNmax, Bm , Bm ,
where dim(XN ,Bm ) = N , 1 ≤ N ≤ Nmax,Bm . We define Nmax ≡ max1≤m≤M Nmax, Bm . The pro-
cedure for the construction of the parameter domain partition and associated RB spaces, as
well as the form of the ‘identifiers’ Bm, shall be made explicit in Section 4. In this section,
we discuss the RB approximation, the RB a posteriori error estimators and the associated
computational procedures given the parameter domain partition and associated RB spaces.

3.1. RB approximation

For any new μ ∈ D, we first determine m∗ ∈ [1, M] such that μ ∈ VBm∗ (⊂ D). Given
any N , we define N̂ ≡ min{N , Nmax,Bm∗ }. The RB approximation of Equation (4) reads as
follows: for any μ ∈ D, find uk

N (μ) ∈ XN ≡ XN̂ ,Bm∗ , 1 ≤ k ≤ K, such that

1

�t
m(uk+1

N (μ)− uk
N (μ), v;μ)+ a(uk+θ

N (μ), v;μ)

+ b(uk+θ
N (μ), uk+θ

N (μ), v;μ) = f (v;μ), ∀v ∈ XN ,
(5)

subject to initial condition u0
N = 0; then evaluate the RB output approximation as sk

N (μ) =
�(uk

N (μ);μ) for 0 ≤ k ≤ K.

3.2. A posteriori error estimation

A rigorous a posteriori upper bound for the RB error is crucial for the Offline hp-
POD/Greedy sampling procedure as well as for the Online certification of the RB
approximation and the RB output. The key computational ingredients of the RB error
bound are the RB residual dual norm and lower bounds for the stability constants.
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Mathematical and Computer Modelling of Dynamical Systems 399

Given an RB approximation, uk
N (μ), 0 ≤ k ≤ K, for μ ∈ D, we write the RB residual

rk
N (υ;μ), 1 ≤ k ≤ K, as

rk+1
N (v;μ) = f (v;μ)− 1

�t
m(uk+1

N (μ)− uk
N (μ), v;μ)− a(uk+θ

N (μ), v;μ)

− b(uk+θ
N (μ), uk+θ

N (μ), v;μ), ∀v ∈ XN .
(6)

The Riesz representation of the residual êk
N (μ) ∈ XN , 1 ≤ k ≤ K, satisfies

(êk
N (μ), v)X = rk

N (v;μ), ∀v ∈ XN . (7)

We denote by εk
N (μ) =‖ êk

N (μ) ‖X= supv∈XN
rk

N (v;μ)
‖v‖X

the residual dual norm.
We next introduce positive lower bounds for the coercivity constants of m and a, σLB

and αLB, respectively, such that for all μ ∈ D

0 < σLB(μ) ≤ σ (μ), 0 < αLB(μ) ≤ α(μ). (8)

We also introduce a lower bound for the (possibly negative) stability constant

ρN (tk+1;μ) ≡ inf
v∈XN

2b(uk+θ
N (μ), v, v;μ)+ a(v, v;μ)

‖ v ‖2
L2

, 0 ≤ k ≤ K − 1, (9)

which we shall denote ρLB
N (tk ;μ): ρLB

N (tk ;μ) ≤ ρN (tk ;μ) for 1 ≤ k ≤ K and all μ ∈ D. We
further define τLB

N (tk ;μ) = min(ρLB
N (tk ;μ), 0).

We can then develop the L2(�) error bound

�k
N (μ) =

√√√√√√√√√
�t

k∑
k′=1

(
εN (tk′ ;μ)2

1−(1−θ)�t τLB
N (tk′ ;μ)

k′−1∏
j=1

1+θ�t τLB
N (tj;μ)

1−(1−θ)�t τLB
N (tj;μ)

)

αLB(μ)σLB(μ)
k∏

k′=1

1+θ�t τLB
N (tk′ ;μ)

1−(1−θ)�t τLB
N (tk′ ;μ)

, (10)

for which it can be demonstrated [4,12,11] that ‖ uN k(μ)− uk
N (μ) ‖L2≤ �k

N (μ), 1 ≤ k ≤
K, ∀μ ∈ D.1 We can furthermore develop an RB output error bound

�k
N ,s(μ) ≡

(
sup

v∈XN

�(v;μ)

‖ v ‖L2

)
�k

N (μ), (11)

for which it can be demonstrated that |sN k(μ)− sk
N (μ)| ≤ �k

N ,s(μ), 1 ≤ k ≤ K, ∀μ ∈ D.

3.3. Computational procedures

3.3.1. Construction–evaluation

Thanks to the ‘affine’ assumption (3), we can develop Construction–Evaluation procedures
for the RB field, RB output and RB error bound. We first consider the RB field and the RB
output. In the Construction stage, given the RB basis functions, we form and store all
the necessary parameter-independent entities at cost O(N •). In the Evaluation stage, we
first determine the subdomain to which the given new parameter μ belongs: an O(log2 M)
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400 J.L. Eftang et al.

binary search suffices thanks to the hierarchical subdomain construction, which we will
make explicit in the next section [7]. We next assemble the RB system (5) at cost O(QN2)
(N ≤ Nmax) in the LTI case [6] and at cost O(nNewtonQN3K) in the quadratically non-linear
case [11,12]; we then solve this system at cost O(N3 + KN2) in the LTI case and at cost
O(nNewtonKN3) in the quadratically non-linear case. (Here nNewton is the number of Newton
iterations required to solve the non-linear equations at each timestep.) Given the RB field,
the RB output can be evaluated at cost O(KN).

We next consider the RB error bound (10). We invoke the Riesz representation of the
residual and linear superposition to develop Construction–Evaluation procedures for the
residual dual norm.2 In the Construction stage, we again compute and store all the nec-
essary parameter-independent entities at cost O(N •). In the Evaluation stage, we can
evaluate the residual dual norm at cost O(KN2 + Q2N2) for LTI problems [6] and at
cost O(KQ2N4) for quadratically non-linear problems [11,12]. (In the sequel, we shall
assume Q = O(1), as is the case in our numerical examples.) We note that the O(N4) cost
for quadratically non-linear problems compromises rapid evaluation for larger N and in
practice limits Nmax – motivation for an hp approach.

3.3.2. Offline–Online decomposition

The Construction–Evaluation procedures enable efficient Offline–Online decomposition
for the computation of the RB field approximation, RB output approximation and RB out-
put error bound. The Offline stage, which is performed only once as preprocessing, can be
very expensive – N -dependent complexity; the Online stage, which is typically performed
many times, is comparably inexpensive – N -independent complexity. We note that our RB
formulation (5) inherits the temporal discretization of the truth (4); we may thus not choose
�t arbitrarily small without compromise to RB Online cost.

In the hp-RB Offline stage, we perform the hp-POD/Greedy sampling procedure,
which we discuss in the next section and which is the focus of this article: we invoke
Construction–Evaluation procedures to identify good RB spaces and to compute and
store the Construction quantities required in the Online stage. The link between the
Offline and Online stages is the permanent storage of the Online Dataset; the stor-
age requirement for the hp-RB method is O(MN2

max) in the linear case and O(MN4
max)

in the quadratically non-linear case. We recall that M is the number of subdomains
identified by the hp-POD/Greedy. In the hp-RB Online stage, we perform Evaluation
based on the Online Dataset: we calculate the RB field approximation, the RB out-
put approximation and the RB error bound at the given new parameter in O(N•)
complexity.

4. hp-POD/Greedy sampling

In this section, we discuss the hp-POD/Greedy procedure for the construction of the
parameter subdomain partition and the associated RB approximation spaces. We employ
a hierarchical parameter domain splitting procedure and hence we may organize the sub-
domains in a binary tree. Let L denote the number of levels in the tree. For 1 ≤ l ≤ L, we
introduce Boolean vectors

Bl = (1, i1, i2, . . . , il) ∈ {1} × {0, 1}l. (12)

For any Bl, 1 ≤ l ≤ L− 1 we define the concatenation (Bl, i) ≡ (1, i1, . . . , il, i), i ∈ {0, 1}.
The M subdomains of D are associated to the M leaf nodes of the binary tree; we denote
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Mathematical and Computer Modelling of Dynamical Systems 401

by Bm, 1 ≤ m ≤ M , the Boolean vectors that correspond to the leaf nodes; we can thus
label the parameter subdomains as VBm ⊂ D, 1 ≤ m ≤ M . Similarly, we denote by X1,Bm ⊂
· · · ⊂ XNmax,Bm ,Bm (⊂ XN ) the set of nested RB approximation spaces associated to VBm ,
1 ≤ m ≤ M .

4.1. Procedure

The hp-POD/Greedy algorithm introduced here applies to both the linear and non-linear
cases. However, we adopt the notation of the linear (b = 0) and scalar (d = 1) problems
for simplicity.

Algorithm 4.1: [{χ i ∈ X , 1 ≤ i ≤ �N}] = POD({wk ∈ XN , 1 ≤ k ≤ K},�N)

1: Ci j ← (wi, wj)X/K, 1 ≤ i, j ≤ K;
2: Solve Cψ i = λiψ i, (ψ i)T Cψ i = 1

K , for (ψ i ∈ RK , λi ∈ R) associated with the �N
largest eigenvalues of C;

3: Compute χ i =∑K
k=1 ψ

i
kwk for 1 ≤ i ≤ �N .

We introduce as Algorithm 4.1 the POD algorithm (the Method of Snapshots [16]). For
specified �N and {wk ∈ XN , 1 ≤ k ≤ K}, Algorithm 4.1 returns �N ≤ K X -orthonormal
functions3 {χ i ∈ X , 1 ≤ i ≤ �N} such that P�N = span{χ i, 1 ≤ i ≤ �N} satisfies the
optimality property

P�N = arg inf
Y⊂span{wk ,1≤k≤K}

dimY≤�N

(
1

K

K∑
k=1

inf
w∈Y
‖ wk − w ‖2

X

)1/2

. (13)

The set {χ i, 1 ≤ i ≤ �N} contains the �N first POD modes of span{w1, . . . , wK}.
We next introduce as Algorithm 4.2 the POD/Greedy sampling procedure of [3] (see

also [17]). Let V ⊆ D. For specified �N , an RB space dimension upper bound N , an
initial parameter value μ∗ ∈ V , a finite train sample �train ⊂ V and an error bound tol-
erance ε, Algorithm 4.2 returns Ñmax ≤ N nested RB spaces X1 ⊂ . . . ⊂ XÑmax

(note that
as the spaces are nested by construction, we only specify XÑmax

as the return argument)

and εmax = maxμε�train �
K
Ñmax

(μ) such that either εmax ≤ ε or Ñmax = N . (Note that in the

POD/Greedy we may take the L2([0, tf ]; X ) RB error bound �K
N ,X rather than the L2(�)

RB error bound �K
N [17]; for the linear coercive case, �K

N ,X (μ) = σ 1/2
LB (μ)�K

N (μ).)
We initialize the POD/Greedy by setting N = 0, XN = {0} and εmax = ∞. Then, while

the dimension of the RB space is less than N and the tolerance ε is not satisfied over �train,
we enrich the RB space: we first compute the projection error ek

N ,proj(μ
∗) = uN k(μ∗)−

projXN
(uN k(μ∗)), 1 ≤ k ≤ K, where projXN

(w) denotes the X -orthogonal projection of w ∈
XN onto XN ; we next increase the dimension of the RB space by adding the�N first POD
modes of the projection error to the current RB space; we then greedily determine the next
parameter value over �train based on the a posteriori error estimator at the final time. We
invoke Construction–Evaluation procedures for the computation of the maximum RB error
bound over �train (line 7 of Algorithm 4.2); as the RB error bound calculation is very fast
(N -independent in the limit of many evaluations), we may choose �train very dense.
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402 J.L. Eftang et al.

Algorithm 4.2: [XÑmax , εmax] = POD/Greedy(�N , N , ε,μ∗,�train)

1: Set XN = {0}, N = 0, εmax = ∞;
2: while εmax > ε and N < N do
3: ek

N ,proj(μ
∗)← uN k(μ∗)− projXN

(uN k(μ∗)), 1 ≤ k ≤ K;
4: for i = 1, . . . , min{�N , N − N} do
5: XN+i ← XN ⊕ span{POD({ek

N ,proj(μ
∗), 1 ≤ k ≤ K}, i)};

6: end for
7: μ∗ ← arg maxμ∈� �K

N (μ);
8: εmax ← �K

N (μ∗);
9: N ← N +�N ;
10: end while
11:Ñmax ← N ;

We finally introduce as Algorithm 4.3 the hp-POD/Greedy algorithm. For specified
�N , an RB space dimension upper bound N , error bound tolerances ε1

tol and ε2
tol, an initial

parameter anchor point μ̂0
(1) and an initial train sample �train,(1) ⊂ D of cardinality ntrain,

Algorithm 4.3 constructs a hierarchical splitting of D into M = M(ε1
tol, N) subdomains

VBm , 1 ≤ m ≤ M , and associates to each parameter subdomain an RB space XNmax,Bm ,Bm of
dimension Nmax,Bm ≤ Nmax ≤ N such that for each subdomain VBm , the tolerance ε1

tol > 0
is satisfied over �train,Bm ⊂ VBm by �̃K

R,Bm and the tolerance ε2
tol is satisfied over �train,Bm

by �K
Nmax,Bm . We introduce here �̃K

R,Bl
as the RB error bound associated with the tempo-

rary space X̃R,Bl , and we recall that �K
Nmax,Bm is the RB error bound associated with the

returned space XNmax,Bm ,Bm . (In the hp-RB Online stage, we may readily extract spaces
XN ,Bm ⊂ XNmax,Bm of any dimension N , 1 ≤ N ≤ Nmax,Bm .)

We now comment on the constant η > 1, which in turn determines the dimension R of
the temporary spaces X̃R,Bl (lines 3–6): we successively increment R and evaluate �̃K

R,Bl
(μ̂0

Bl
)

until �̃K
R,Bl

(μ̂0
Bl

) < ε1
tol/η. For η > 1, the tolerance ε1

tol is then satisfied by �̃K
R,Bl

in a neigh-
bourhood of the anchor point μ̂0

Bl
, and we thus avoid arbitrarily small subdomains. We note

that η = ∞ corresponds to R= K; however, typically R� K is sufficient and we may thus
choose η close to (but larger than) unity.

We next consider the splitting of any particular subdomain VBl ⊂ D into two new sub-
domains V(Bl ,0) ⊂ VBl and V(Bl ,1) ⊂ VBl . We suppose that VBl is equipped with a train sample
�train,Bl ⊂ VBl . Given a parameter anchor point μ̂0

Bl
∈ VBl , we first compute the truth field

uN k(μ̂0
Bl

), 1 ≤ k ≤ K, and define the temporary RB space X̃R,Bl associated with the subdo-

main VBl as discussed above. The next step is to evaluate �̃K
R,Bl

(μ) for all μ ∈ �train,Bl

in order to identify a second anchor point (line 7) μ̂1
Bl
= arg maxμ∈�train,Bl

�̃K
R,Bl

(μ). We

note that the two anchor points μ̂0
Bl

and μ̂1
Bl

are maximally different in the sense of
the RB error bound, and thus provide good initial parameter values for two new RB
spaces.

We now introduce a distance function, δ : D×D→ R; for example, we may choose
Euclidean distance. We can then implicitly define two new subdomains V(Bl ,0) ⊂ VBl

and V(Bl ,1) ⊂ VBl based on the distance to the two anchor points: V(Bl ,0) = {μ ∈ VBl :
δ(μ̂0

Bl
,μ) < δ(μ̂1

Bl
,μ)} and V(Bl ,1) = {μ ∈ VBl : δ(μ̂0

Bl
,μ) ≥ δ(μ̂1

Bl
,μ)}. Note that by this

definition, parameter values that are equidistant from the two anchor points μ̂0
Bl

and μ̂1
Bl
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Mathematical and Computer Modelling of Dynamical Systems 403

Algorithm 4.3: hp-POD/Greedy(�train,Bl , μ̂
0
Bl

, ε1
tol, ε

2
tol, N , �N)

1: Set R← 0, X̃R, Bl ← {0};
2: Compute uN k(μ̂0

Bl
), 1 ≤ k ≤ K;

3: while �̃K
R,Bl

(μ̂0
Bl

) > εtol/η do
4: R← R+ 1;
5: X̃R,Bl ← span{POD({uN k(μ̂0

Bl
), 1 ≤ k ≤ K}, R)};

6: end while
7: μ̂1

Bl
← arg maxμ∈�train,Bl

�̃K
R, Bl

(μ) and set μ̂0
(Bl ,0) ← μ̂0

Bl
, μ̂0

(Bl ,1) ← μ̂1
Bl

;

8: if maxμ∈�train,Bl
�̃K

R, Bl
(μ) > ε1

tol then
9: Determine �train,(Bl ,0),�train,(Bl ,1);

10: XNmax,(Bl ,0),(Bl ,0) ← hp-POD/Greedy(�train,(Bl ,0), μ̂0
(Bl ,0), ε

1
tol, ε

2
tol, N ,�N);

11: XNmax,(Bl ,1),(Bl ,1) ← hp-POD/Greedy(�train,(Bl ,1), μ̂0
(Bl ,1), ε

1
tol, ε

2
tol, N ,�N);

12: else
13: [XNmax,Bl

,Bl , εmax] = POD/Greedy(�N , N , ε2
tol, μ̂

0
Bl

,�train,Bl );

14: if εmax > ε2
tol then

15: Discard XNmax,Bl
,Bl ;

16: Determine �train,(Bl ,0),�train,(Bl ,1);
17: XNmax,(Bl ,0),(Bl ,0) ← hp-POD/Greedy(�train,(Bl ,0), μ̂0

(Bl ,0), ε
1
tol, ε

2
tol, N ,�N);

18: XNmax,(Bl ,1),(Bl ,1) ← hp-POD/Greedy(�train,(Bl ,1), μ̂0
(Bl ,1), ε

1
tol, ε

2
tol, N ,�N);

19: else
20: Let m = (number of spaces returned so far + 1) and set Bm ≡ Bl;
21: return XNmax,Bm ,Bm ≡ XNmax,Bl

,Bl ;
22: end if
23: end if

belong to V(Bl ,1). The final step of splitting is to construct a new train sample associated with
each of the two new subdomains (line 9). We first enrich (by adding random points, say)
the current train sample �̃train,Bl ⊃ �train,Bl such that �̃train,Bl ⊂ VBl has cardinality 2ntrain;
we then define

�train,(Bl ,i) ≡ �̃train,Bl ∩ V(Bl ,i), i = 0, 1. (14)

We note that we may choose the initial train sample for the hp-POD/Greedy to be rather
sparse compared with the train sample for the standard POD/Greedy, because we effec-
tively construct an adaptively refined train sample (over D) during the parameter domain
partition process. The adaptively generated hp-POD/Greedy train sample associated with
a given subdomain is typically much smaller than the (global) train sample associated with
the standard POD/Greedy.

We apply this splitting scheme recursively to partition D into the final M subdo-
mains; we can thus organize the subdomains in a binary tree. In Figure 1, we illustrate
the procedure, as well as the associated binary tree, for two levels of recursive splitting.

The final step is p-refinement: we identify the nested RB spaces to be associated with
the subdomain (line 13). If the POD/Greedy returns with εmax > ε2

tol, we discard the gen-
erated basis and successively perform additional subdomain splitting and POD/Greedy
steps until the tolerance is satisfied with at most N basis functions (lines 15–18). This
additional splitting step permits simultaneous control over ε2

tol and Nmax. We note that
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404 J.L. Eftang et al.

V(1) = D

V(1,0)

V(1,1)

V(1,0,0)

V(1,0,1)
V(1,1)

V(1,0,0)

V(1,1,0)

V(1,0,1)

V(1,1,1)

Figure 1. Two levels of h-refinement and associated binary tree; here L = 3.

�N – the number of POD modes to include at each Greedy iteration during p-refinement –
is typically chosen small: small�N leads to more optimal spaces albeit at a higher (Offline)
computational cost.

Under the assumption that N is chosen such that R is always smaller than N (note
that we can always ‘re-specify’ N if at any point R > N), the hp-POD/Greedy algorithm
provides an Online Dataset such that the RB error bound tolerance ε2

tol is satisfied (over the
train samples) with at most Nmax ≤ N basis functions. We hope to achieve this goal without
the expensive execution of lines 15–18: it is our intent that if ε1

tol is satisfied with R basis
functions, then ε2

tol < ε1
tol will be satisfied with at most N > R basis functions; whenever

this is true, we discard only R basis functions at each level of splitting.
We regard lines 15–18 as insurance: if ε2

tol is not satisfied with at most N basis func-
tions – even if ε1

tol was satisfied with R basis functions – we discard the computed candidate
space, split the subdomain and again execute hp-POD/Greedy in a recursive manner.
Ideally ε1

tol is chosen such that the insurance is rarely invoked and Nmax,Bm ≤ N is close
to N for most m ∈ [1, M]. If the insurance is invoked too often – ε1

tol is too large with
respect to the target N – the Offline computational cost will be large. If the insurance is
rarely or never invoked and Nmax,Bm � N for most m ∈ [1, M], then ε1

tol is too small with
respect to the target N .

Remark 4.1: We note that as the number of subdomains M increases, the
hp-POD/Greedy algorithm in general requires a larger (Offline) computational cost
and generates a larger Online Dataset than the standard (p-type) POD/Greedy method.
However, in the non-linear case, the O(N4) cost and storage associated with the RB error
bound help to moderate this increase: an increase in M provides a decrease in N such that
the product MN4 grows only modestly. We further note that, thanks to the efficient log2(M)
subdomain search, M can be very large without compromise to the Online computational
cost. In practice, we thus seek M to balance Offline cost and Online storage against Online
speed.

Remark 4.2: As discussed in [11,12], we must employ a ‘nominal’ lower bound ρ∗
for the stability factor ρN for non-linear parabolic problems during the POD/Greedy: the
SCM, which allows for construction of the rigorous lower bound ρLB

N , can only be per-
formed after generation of the RB space. In this context, ρ∗ is a conservatively chosen
constant or (say) a linear function of μ. Note that the rigour of our error bounds in the
Online stage is not compromised: after completion of the POD/Greedy, we perform the
SCM,4 and subsequently the Online RB error bounds are rigorous.
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Mathematical and Computer Modelling of Dynamical Systems 405

4.2. A priori convergence analysis

We now introduce an a priori convergence theory for Algorithm 4.3. Selection of relatively
few and optimal subdomains – small M for specified ε1

tol – is crucial to reduce both Offline
cost and Online cost and storage. We consider here the class of linear scalar problems
(b = 0, d = 1). For simplicity, we consider the case of a single parameter (P = 1); we
assume a Backward Euler temporal discretization (θ = 1); and we consider the case in
which m(·, ·;μ) is parameter independent and in particular equal to the L2(�) inner product:
m(w, v;μ) ≡ m(w, v) ≡ ∫

�
wv.

We recall that the bilinear form a and the linear functional f admit the affine expansions

a(·, ·;μ) =
Qa∑

q=1

aq(·, ·)	q
a(μ), f (·;μ) =

Qf∑
q=1

f q(·)	q
f (μ), (15)

for all μ ∈ D. For our purposes in this section, we shall require that

a(·, ·;μ) = a1(·, ·)+
Qa∑

q=2

aq(·, ·)	q
a(μ) ≡ a1(·, ·)+ aII(·, ·;μ), (16)

where a1 is an X -inner product and aII is L2-continuous in its second argument. Specifically
we require, for any v ∈ X , w ∈ X ,

a1(v, w) ≤‖ v ‖X‖ w ‖X , (17)

aq(v, w) ≤ γ q ‖ v ‖X‖ w ‖L2 , 2 ≤ q ≤ Qa. (18)

We also require that the f q : X → R are L2-bounded:

f q(v) ≤‖ f q ‖L2‖ v ‖L2 , 1 ≤ q ≤ Qf . (19)

For simplicity, we suppose that ‖·‖X=‖·‖H1 ; hence ‖ v ‖L2≤‖ v ‖X for all v ∈ X . We
further require that the 	q

a : D→ R and 	q
f : D→ R are Lipschitz continuous: for any

μ1 ∈ D, μ2 ∈ D, there exist constants Lq
a and Lq

f , 1 ≤ q ≤ Qa, such that

|	q
a(μ1)−	q

a(μ2)| ≤ Lq
a|μ1 − μ2|, 1 ≤ q ≤ Qa, (20)

|	q
f (μ1)−	q

f (μ2)| ≤ Lq
f |μ1 − μ2|, 1 ≤ q ≤ Qf . (21)

We introduce lower and upper bounds over D for the coercivity and continuity constants of
a(·, ·;μ):

0 < α ≡ min
μ∈D

α(μ) = min
μ∈D

inf
v∈X

a(v, v;μ)

‖ v ‖2
X

, ∞ > γ ≥ max
μ∈D

sup
v∈X

sup
w∈X

a(v, w;μ)

‖ v ‖X‖ w ‖X
, (22)

respectively. For simplicity of notation we suppose, for v, w ∈ X and any μ ∈ D, that
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406 J.L. Eftang et al.

aII(w, v;μ) ≤ γ ‖ w ‖X‖ v ‖L2 . (23)

For our theororetical arguments below, we assume α ≤ 1 and γ ≥ 1. The coercivity lower
bound αLB(μ) shall be given as αLB(μ) = α for all μ ∈ D. We emphasize that all our
assumptions in this section are satisfied by our convection–diffusion numerical example of
Section 5.1.

We consider Algorithm 4.3 with Nmax = ∞. Hence p-refinement – execution of POD/
Greedy in line 13 – will converge (εmax ≤ ε2

tol) for any specified ε2
tol > 0. We thus focus

here on h-refinement; we show in particular that the hp-POD/Greedy algorithm generates
a finite number of parameter subdomains.

To this end, we shall require the following continuity result.

Lemma 4.1: For anyμ1 ∈ D,μ2 ∈ D, and any v ∈ X , w ∈ X , there exist positive constants
ca and cf such that

|a(v, w;μ1)− a(v, w;μ2)| ≤ ca|μ1 − μ2| ‖ v ‖X‖ w ‖L2 , (24)

|f (v;μ1)− f (v;μ2)| ≤ cf |μ2 − μ2| ‖ v ‖L2 . (25)

Proof: We refer to Appendix A for the proof. �

We next define for any μ ∈ D and any vk ∈ X , 1 ≤ k ≤ K, the ‘energy-norm’

|||vk|||μ ≡
(

m(vk , vk)+�t
k∑

k′=1

a(vk′ , vk′ ;μ)

)1/2

. (26)

To this end, we shall require the following stability result.

Lemma 4.2: For any μ ∈ D, the solution uN k(μ) ∈ XN , 1 ≤ k ≤ K, of (4) for θ = 1
satisfies

|||uN k(μ)|||μ ≤ max
μ∈D
‖ f (·;μ) ‖X ′

√
tk

α
, 1 ≤ k ≤ K. (27)

Proof: We refer to Appendix B for the proof. �

For μ1 ∈ D,μ2 ∈ D and 1 ≤ k ≤ K, we define �uk
N ≡ uk

N (μ1)− uk
N (μ2). We shall

require the following continuity result.

Lemma 4.3: Assume that μ1 ∈ D and μ2 ∈ D belong to the same parameter subdomain
(say) VBl ⊂ D, and let XN denote the RB space associated with VBl . Let uk

N (μ1) ∈ XN and
uk

N (μ2) ∈ XN , 1 ≤ k ≤ K, satisfy Equation (5) for θ = 1. Then

|||�uk
N |||μ2 ≤ C̃|μ1 − μ2|, 1 ≤ k ≤ K, (28)
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Mathematical and Computer Modelling of Dynamical Systems 407

where

C̃ =
(

2tk

α3

(
α2c2

f + c2
a max
μ∈D
‖ f (·;μ) ‖2

X ′

))1/2

. (29)

Proof: We refer to Appendix C for the proof. �

We shall finally require the following continuity result, which is a discrete counterpart
of Proposition 11.1.11 of [18].

Lemma 4.4: Assume that μ1 ∈ D and μ2 ∈ D belong to the same parameter subdomain(
say
)
VBl ⊂ D, and let XN denote the RB space associated with VBl . Let uk

N (μ1) ∈ XN

and uk
N (μ2) ∈ XN , 1 ≤ k ≤ K, satisfiy Equation (5) for θ = 1. Then the finite difference

(�uk
N −�uk−1

N )/�t is L2-bounded in time:

(
1

�t

k∑
k′=1

‖ �uk′
N −�uk′−1

N ‖2
L2

)1/2

≤ Ĉ|μ1 − μ2|, (30)

where

Ĉ =
(

3

α2

(
γ 2αC̃2 + tkα2c2

f + tkc2
a max
μ∈D
‖ f (·;μ) ‖X ′

))1/2

. (31)

Proof: We refer to Appendix D for the proof. �

We now claim

Proposition 4.1: Let D ⊂ R and let |D| denote the length of D. For specified ε1
tol,

Algorithm 4.3 terminates for finite M = M(ε1
tol) subdomains; moreover, the convergence

of the h-refinement stage is first order in the sense that

M(ε1
tol) ≤ max

{
1,

C

ε1
tol

}
, C = C(η, |D|). (32)

Proof: The proof has two steps. We first show that the RB error bound is Lipschitz con-
tinuous. We then relate this result to our particular procedure to prove convergence of the
hp-POD/Greedy algorithm.

Step 1: We recall that forμ ∈ D, the Riesz representation êk
N (μ) of the residual rk

N (·;μ),
1 ≤ k ≤ K, satisfies

(êk
N , v)X = rk

N (v;μ), ∀v ∈ XN . (33)

Let μ1 ∈ D, μ2 ∈ D. We define �êk
N ≡ êk

N (μ1)− êk
N (μ2). From Equation (33), we note

that by linearity
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408 J.L. Eftang et al.

(�êk
N , v)X = f (v;μ1)− f (v;μ2)︸ ︷︷ ︸

I

+ a(uk
N (μ2), v;μ2)− a(uk

N (μ1), v;μ1)︸ ︷︷ ︸
II

+ 1

�t

(
m(uk

N (μ2)− uk−1
N (μ2), v)− m(uk

N (μ1)− uk−1
N (μ1), v)

)︸ ︷︷ ︸
III

,
(34)

for all v ∈ XN and for 1 ≤ k ≤ K. For term I, we invoke Lemma 4.1 directly to obtain

|f (v;μ1)− f (v;μ2)| ≤ cf |μ1 − μ2| ‖ v ‖X , ∀v ∈ X . (35)

For term II, we first write

|a(uk
N (μ2), v;μ2)− a(uk

N (μ1), v;μ1)| = |a(uk
N (μ1), v;μ2)− a(uk

N (μ1), v;μ1)
− a(�uk

N , v;μ2)|. (36)

Then, by the triangle inequality, Lemma 4.1, continuity and Equation (22), we obtain

|a(uk
N (μ2), v;μ2)− a(uk

N (μ1), v;μ1)| ≤ |a(�uk
N , v;μ2)| + ca ‖ uk

N (μ1) ‖X‖ v ‖X |μ1 − μ2|
≤γ ‖ �uk

N ‖X‖ v ‖X +ca ‖ uk
N (μ1) ‖X‖ v ‖X |μ1 − μ2|.

(37)

For term III, we invoke linearity, the Cauchy–Schwarz inequality and the Poincaré
inequality5 to obtain

|m(uk
N (μ2)− uk−1

N (μ2), v)−m(uk
N (μ1)− uk−1

N (μ1), v)| = |m(�uk
N −�uk−1

N , v)|
≤ ‖ �uk

N −�uk−1
N ‖L2‖ v ‖L2≤‖ �uk

N −�uk−1
N ‖L2‖ v ‖X .

(38)

We now insert the expressions for terms I, II and III into Equation (34); for v = �êk
N we

then obtain

(�êk
N ,�êk

N )X ≤ cf |μ1 − μ2| ‖ �êk
N ‖X +γ ‖ �uk

N ‖X‖ �êk
N ‖X

+ca ‖ uk
N (μ1) ‖X‖ �êk

N ‖X |μ1 − μ2| + 1

�t
‖ �uk

N −�uk−1
N ‖L2‖ �êk

N ‖X .
(39)

We divide through in Equation (39) by ‖ �êk ‖X , square both sides and invoke the
inequality (A+ B+ C + D)2 ≤ 4(A2 + B2 + C2 + D2) for A, B, C, D ∈ R to obtain

‖ �êk ‖2
X≤ 4|μ1 − μ2|2(c2

f + c2
a ‖ uk

N (μ1) ‖2
X )+ 4

�t2
‖�uk

N −�uk−1
N ‖2

L2 +4γ 2 ‖�uk
N ‖2

X .

(40)

We multiply through in Equation (40) by �t, substitute k for k′ and sum over k′ to obtain

�t
k∑

k′=1

‖ �êk′ ‖2
X≤ 4|μ1 − μ2|2

(
c2

f tk + c2
a�t

k∑
k′=1

‖ uk′
N (μ1) ‖2

X

)

+4γ 2

(
1

�t

k∑
k′=1

‖ �uk′
N −�uk′−1

N ‖2
L2 +�t

k∑
k′=1

‖ �uk′
N ‖2

X

)
.

(41)
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Next, from coercivity and Lemma 4.2 we note that

�t
k∑

k′=1

‖ uk′
N (μ1) ‖2

X≤
|||uk

N (μ1)|||2μ1

α
≤ tk

α2
max
μ∈D
‖ f (·;μ) ‖2

X ′ . (42)

Furthermore, from coercivity and Equation (22), and Lemmas 4.3 and 4.4, we note
that

4γ 2

(
1

�t

k∑
k′=1

‖ �uk′
N −�uk′−1

N ‖2
L2 +�t

k∑
k′=1

‖ �uk′
N ‖2

X

)

≤ 4γ 2

(
1

�t

k∑
k′=1

‖ �uk′
N −�uk′−1

N ‖2
L2

+�t
k∑

k′=1

a(�uk′
N ,�uk′

N ;μ2)

α

)
≤ 4γ 2|μ1 − μ2|2

(
Ĉ2 + C̃2

α

)
.

(43)

From Equation (41) with Equations (42) and (43), we thus obtain

�t
k∑

k′=1

‖ �êk ‖2
X≤ c2|μ1 − μ2|2, (44)

where

c ≡ 2

(
tk

α2

(
α2c2

f + c2
a max
μ∈D
‖ f (·;μ) ‖2

X ′

)
+ γ 2

(
C̃2 + Ĉ2

α

))1/2

. (45)

By the definition of the RB error bound (recall that we use αLB(μ) = α) and the reverse
triangle inequality, we finally obtain

|�k
N (μ1)−�k

N (μ2)| ≤
∣∣∣∣∣∣
(
�t

α

k∑
k′=1

‖ êk
N (μ1) ‖2

X

)1/2

−
(
�t

α

k∑
k′=1

‖ êk
N (μ2) ‖2

X

)1/2
∣∣∣∣∣∣

≤
(
�t

α

k∑
k′=1

‖ �êk
N ‖2

X

)1/2

≤ c√
α
|μ1 − μ2|.

(46)

Step 2: The next step is to relate Equation (46) to the convergence of Algorithm 4.3.
The algorithm generates a partition of D into M subdomains. Either M = 1, in which
case the proof is complete, or M > 1. We now examine the case M > 1. We consider the
splitting of any particular subdomain VBl ⊂ D into two new subdomains V(Bl ,0) ⊂ VBl and
V(Bl ,1) ⊂ VBl . We denote here by μ̂0 = μ̂0

Bl
= μ̂0

(Bl ,0) the anchor point associated with VBl

and V(Bl ,0), and by μ̂1 = μ̂1
Bl
= μ̂0

(Bl ,1) the anchor point associated with V(Bl ,1). We assume
that the error tolerance at the final time is not satisfied over (a train sample over) VBl ; hence
ε1

tol ≤ �̃K
R,Bl

(μ̂1). We recall that by construction of our procedure �̃K
R,Bl

(μ̂0) ≤ ε1
tol/η for

specified η ≥ 1. We can thus invoke Equation (46) for μ1 = μ̂1, μ2 = μ̂0 and�k
N replaced

by �̃K
R,Bl

to conclude that
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410 J.L. Eftang et al.

ε1
tol −

ε1
tol

η
< |�̃K

R,Bl
(μ̂1)− �̃K

R,Bl
(μ̂0)| ≤ c√

α
|μ̂1 − μ̂0|, (47)

and hence

|μ̂1 − μ̂0| ≥ ε
1
tol
√
α(η − 1)

cη
. (48)

We now split VBl into V(Bl ,0) and V(Bl ,1) based on Euclidean distance to the two anchor
points. It is clear that

|V(Bl ,i)| ≥
1

2
|μ̂1 − μ̂0| > ε1

tol
√
α(η − 1)

2cη
, i = 0, 1. (49)

The partition procedure generates M > 1 distinct subdomains VBm , 1 ≤ m ≤ M .6 Each of
these subdomains is the result of a splitting of a ‘parent’ subdomain VBl ⊃ VBm (for some
Bl, 0 ≤ l ≤ L− 1). As Bl above was arbitrary, we can successively set VBl to be the parent
of each of the M ‘leaf’ subdomains and conclude that

|VBm | > ε1
tol
√
α(η − 1)

2cη
, 1 ≤ m ≤ M . (50)

We define δM ≡ min1≤m≤M |VBm |; hence in particular δM ≥ ε
1
tol
√
α(η − 1)

2cη
.

We complete the proof by a contradiction argument. Assume that M >
|D|2cη

ε1
tol
√
α(η − 1)

.

Thus

MδM >
|D|2cη

ε1
tol
√
α(η − 1)

ε1
tol
√
α(η − 1)

2cη
= |D|, (51)

which is clearly a false statement. We conclude that M = M(ε1
tol) ≤ C(η, |D|)/ε1

tol with
C(η, |D|) = |D|2cη√

α(η−1) . We finally note that Algorithm 4.3 is convergent because the

POD/Greedy (line 13) will be able to satisfy the error bound tolerance ε2
tol within each

of the M final subdomains. �

Remark 4.3: The requirement η > 1 reappears in the proof in Equation (47). We note that
we cannot obtain a positive lower bound for the distance between the two anchor points if
η ≤ 1.

Remark 4.4: If we assume only f ∈ X ′ (and not in L2) and furthermore aII only X-
continuous in both arguments (and not L2-continuous in the second argument), then we
can still obtain Proposition 4.1 albeit with an additional factor 1/�t in the ‘constant’ C.
However, we note that this 1/�t factor is in this case relatively ‘benign’: we cannot in any
event let ‘�t→ 0’ in practice because of the increase in Online computational cost. (In
contrast, we can let ‘N →∞’ because larger N affects only Offline cost.)
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We recall that all the hypotheses of Proposition 4.1 are satisfied by our numerical
example in Section 5.1.

Remark 4.5: Proposition 4.1 guarantees that the partition algorithm (h-refinement) is con-
vergent. However, the convergence is very slow and hence subsequent p-refinement is in
practice necessary. But note that with only a global Lipschitz constant c in our proof, our
bound (32) is very pessimistic and in particular does not reflect any adaptivity in the parti-
tion. In practice, we expect that the algorithm adaptively generates smaller subdomains in
areas of D for which the field exhibits larger variations with the parameters.

5. Numerical results

We now present numerical results for two model problems. We demonstrate that in both
cases the hp-RB method yields significant Online computational savings relative to a stan-
dard (p-type) RB approach; we also show that the partitions of D may reflect the underlying
parametric sensitivity of the problems. All our computational results are obtained via
rbOOmit [19], which is an RB plugin for the open-source FE library libMesh [20].
All computations are performed on a 2.66-GHz processor. For the hp-RB approximations
below, we have used a ‘scaled’ Euclidean distance for the distance function δ(·, ·): we map
D (a rectangle in both our examples) to D̂ = [0, 1]P (via an obvious affine transformation)
and compute the Euclidean distance on D̂. For the constant η in Algorithm 4.3, we choose
η = 1.1.

5.1. Convection–[diffusion problem]

We consider the non-dimensional temperature u, which satisfies the convection–diffusion
equation in the spatial domain� = {(x1, x2) : x2

1 + x2
2 < 2} for the discrete time levels tk =

0.01k, 0 ≤ k ≤ 100; we employ Backward Euler temporal discretization (hence θ = 1).
We impose a parameter-dependent velocity field V (μ) ≡ V (ν,ϕ) ≡ (ν cosϕ, ν sinϕ) and
we prescribe a constant forcing term q = 10. We specify homogeneous Dirichlet boundary
conditions and zero initial conditions. We denote a particular parameter value μ ∈ D by
μ = (ν,ϕ) and we introduce the parameter domain D = [0, 10]× [0,π ] ⊂ R

P=2. For this
problem, we focus for simplicity on the RB field approximation and thus we do not consider
any particular outputs.

We next introduce the forms

m(w, v;μ) = ∫
�

wv,
a(w, v;μ) = ∫

�
(∇w · ∇v+ (V (μ) · ∇w)v),

f (v;μ) = q
∫
�

v = 10
∫
�

v,
(52)

for v, w ∈ X , where X = H1
0 (�). Our problem can then be expressed in the form (4) with

b = 0; note that our only parameter-dependent form is a, which admits an affine expan-
sion (3) with Qa = 3. We note that this problem satisfies all the theoretical hypothesis
of Proposition 4.1.7 For our truth approximation, we choose a P2 FE space XN ⊂ X of
dimension N = 1889.

To obtain a benchmark for comparison, we first perform a standard (p-type)
POD/Greedy: we specify ε = 10−5 for the target tolerance, �N = 1 for the number of
POD modes to include at each greedy iteration, μ∗ = (0, 0) for the initial parameter value
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Figure 2. Convergence: hp-RB (triangles (M = 22) and squares (M = 278)) and p-type RB
(circles). In the hp-RB cases, the error bound is the maximum over all subdomains for a given N .

and a train sample �train ⊂ D of size 900. We then execute Algorithm 4.2 (we also ‘spec-
ify’ N = ∞ such that the POD/Greedy terminates for ε satisfied over�train). The tolerance
is in this case satisfied for Nmax = Ñmax = 129.

We next perform two hp-POD/Greedy computations. In the first, we specify ε1
tol = 5,

ε2
tol = 10−5, N = 65, �N = 1, μ̂0

(1) = (0, 0) and a train sample �train,(1) of size 64. In this

case, Algorithm 4.3 terminates for M = 22 subdomains with Nmax = N = 65 (recall that
Nmax ≡ max1≤m≤M Nmax,Bm ). In the second case, we specify ε1

tol = 1.5, ε2
tol = 10−5, N =

45, �N = 1, μ̂0
(1) = (0, 0) and a train sample �train,(1) of size 25. In this case, Algorithm

4.3 terminates for M = 278 subdomains with Nmax = N = 45. The maximum RB L2(�)
error bound εmax

N ,M (over the train samples) over all M subdomains for each of the cases
M = 22 and 278, as well as the p-type reference case M = 1, are plotted in Figure 2 as
functions of N . We note that larger M yields smaller N , as desired.

We show the two partitions of D in Figure 3.8 Note that the field variable exhibits larger
variations with ϕ for larger ν, and hence we would expect the subdomain size to decrease
with increasing ν. However, this is not the case in Figure 3(b) except for smaller ν. By
way of explanation, we note that when the field varies significantly with time, which is
indeed the case for large ν, R – the number of POD modes in the temporary space X̃R,Bl –
will be larger. We suspect that the additional POD modes included in the X̃R,Bl associated
with subdomains for ν larger than approximately 5 may also represent some parametric
variations in the field and hence account for the ‘non-monotonic’ (in ν) subdomain size.

We note that the hp-RB method indeed yields a significant Online speedup. Online
p-type RB calculation of the RB solution coefficients and error bound for N = 129 basis
functions requires 1.4× 10−2 seconds. In contrast, Online hp-RB calculation of the RB
solution coefficients and error bound for the case with M = 22 subdomains and N = 65
requires 3.3× 10−3 seconds, and for the case with M = 278 subdomains and N = 45
requires 1.8× 10−3 seconds; in both cases, the search for the subdomain containing the
new online parameter is negligible (O(10−6) seconds). (The timing results are averages
over 100 Online calculations for randomly selected μ ∈ D.)
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Figure 3. Parameter domain partitions VBm, 1 ≤ m ≤ M , for the convection–diffusion problem.

Of course, Offline cost and Online storage are larger for the hp-RB than for the standard
(p-type) RB: the Offline stage requires 29.6 minutes and 3.5 hours for the hp-RB computa-
tions (M = 22 and M = 278, respectively) and only 13.4 minutes for the standard RB; the
Online Dataset requires 25.3 MB and 142.9 MB for the hp-RB computations (M = 22 and
M = 278, respectively) and only 5.7 MB for the standard RB. In particular, Offline cost
for the M = 278 computation is admittedly very large compared with the Offline cost for
the p-type computation. Of course, even in our ‘real time’ and ‘many query’ contexts, the
larger Offline cost associated with the hp-RB method may be an issue; we must thus seek
to balance the increase in Offline cost against the decrease in Online cost by appropriate
choices of the parameters ε1

tol and N . We note that for this problem, our M = 22 hp-RB
computation provides significant Online speedup at only modest increase in Offline cost.

The additional splitting step – the “insurance” provided by lines 15–18 in Algorithm
4.3 – was never invoked for either hp-POD/Greedy computation. For the computation with
specified N = 65, the average of Nmax,Bm , 1 ≤ m ≤ M = 22, is 57.3. For the computation
with specified N = 45, the average of Nmax,Bm , 1 ≤ m ≤ M = 278, is 37.9. We conclude
that in both cases we could have chosen ε1

tol somewhat larger (at the risk of invoking
insurance) to obtain a more optimal partition with respect to the target N .

We finally note that calculation of the truth (4) for this problem with N = 1889
requires about 0.9 seconds. The average speedup relative to a truth calculation is approx-
imately 64 for the p-type Online calculation with N = 129, and approximately 273
and 500 for the hp-RB Online calculations (N = 65, M = 22 and N = 45, M = 278,
respectively).

5.2. Boussinesq problem

We consider natural convection in the two-dimensional enclosure � = (0, 5)2\P , where
P is the ‘pillar’ (2.5− 0.1, 2.5+ 0.1)× (0, 1), for the discrete time levels tk = 0.0016k,
0 ≤ k ≤ 100; we employ Crank–Nicolson temporal discretization (hence θ = 0.5). The
direction of the acceleration of gravity is defined by the unit vector (− sinφ,− cosφ). We
solve for the field variables V1, V2 (the x and y components of the fluid velocity) and ϑ
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414 J.L. Eftang et al.

Figure 4. The computational domain; note that � does not include the pillar, which is shaded. The
output regions D1, D2 and D3 are also indicated.

(the temperature) over �; hence the field has dimension d = 3. The ‘roof’ of the enclo-
sure is maintained at temperature ϑ = 0, the sides and base of the enclosure are perfectly
thermally insulated and the top and sides of the pillar are subject to a uniform heat flux of
magnitude Gr (the Grashof number); we impose no-slip velocity conditions on all walls.
We denote a particular parameter valueμ ∈ D byμ = (μ1,μ2) = (Gr,φ) and we introduce
the parameter domain D = [4000, 6000]× [0, 0.2] ⊂ R

P=2. Note that we set the Prandtl
number, Pr, here to 0.71 (for air).

Our goal is to study parametric dependence of the temperature in regions at or near
the top of the heated pillar (or ‘fin’) in the presence of natural convection, and hence we
are interested in local average-temperature outputs. These outputs can be expressed as
L2(�)-bounded functionals of ϑ , namely,

sn(t;μ) = �n(ϑ(t;μ),μ) = 1

μ1|Dn|
∫

Dn

ϑ(t;μ) ; (53)

here D1 = [2.2, 2.4]× [1, 1.1], D2 = [2.4, 2.6]× [1, 1.1], D3 = [2.6, 2.8]× [1, 1.1] are
three small rectangles above the pillar. The domain geometry and output regions are
depicted in Figure 4.

We introduce the forms

m(w, v;μ) = ∫
�

wiυi,

a(w, v;μ) = ∫
�

(
∂w1

∂xj

∂v1

∂xj
+ ∂w2

∂xj

∂v2

∂xj
+ 1

Pr

∂w3

∂xj

∂v3

∂xj

)
,

b1(w, v;μ) = −√μ1Pr sinμ2
∫
�

w3v1 −√μ1Pr cosμ2
∫
�

w3v2,

b2(w, z, v;μ) = 1
2
√
μ1Pr

∫
�

(
∂wizj

∂xj
+ zj

∂wi

∂xj

)
vi,

f (v;μ) = μ1

Pr

∫
∂�p

v3,

(54)

for w = (w1, w2, w3) ∈ X , v = (v1, v2, v3) ∈ X and z = (z1, z2, z3) ∈ X ; in these expres-
sions, i = 1, 2, 3 and j = 1, 2. Here, X = Z ×W , where Z is the divergence-free subspace
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Figure 5. (a) Convergence: hp-RB (triangles) and p-type RB (circles). (b) Parameter domain parti-
tion: we show the anchor point (a circled white dot) and the Greedily selected parameters (white dots)
in each subdomain; note that, within a subdomain, parameters are often selected more than once by
the POD/Greedy algorithm.

of (H1
0 (�))2, and H1

0 (�) ⊂ W ⊂ H1(�) is the subspace of H1(�) of functions that vanish
on the enclosure roof.

Our problem can then be expressed in the form (4) with b(w, z, v;μ) = b1(w, v;μ)+
b2(w, z, v;μ) (we have used a skew-symmetric form of the non-linear convection opera-
tor b2(w, z, v;μ) to generate certain discrete stability properties [18]); note that all forms
satisfy the ‘affine’ assumption. For our truth FE space, we choose XN = ZN ×WN of
dimension N = 7248, where ZN denotes a discretely divergence-free P2 space for the
velocity (developed from the P2 − P1 Taylor–Hood velocity–pressure approximation) and
WN is a standard P2 FE space for the temperature. For further details on the formulation
of this problem, see [11].

We note that for the computational results for this problem, we consider a ‘relative
L2(�) error bound’ version of Algorithm 4.2 and hence Algorithm 4.3. To obtain a bench-
mark for comparison, we first perform a standard (p-type) POD/Greedy computation: we
specify ε = 2× 10−3 for the target tolerance, �N = 3 for the number of POD modes to
include at each Greedy iteration, μ∗ = (6000, 0) for the initial parameter value and a train
sample �train of size 200. In this case, Algorithm 4.2 terminates for Nmax = Ñmax = 72.
Recall that in the quadratically non-linear case, the POD/Greedy terminates when the
nominal error bound reaches the prescribed tolerance.

We then perform an hp-POD/Greedy computation: we specify ε1
tol = 1.2, ε2

tol =
2× 10−3, N = 45, �N = 3, μ̂0

(1) = (6000, 0) and a train sample �train,(1) of size 9. In this
case, Algorithm 4.2 terminates after generation of M = 45 subdomains with Nmax = 45.
The maximum relative RB L2(�) error bound εmax

N ,M (over the train samples) over all subdo-
mains for the hp-RB approximation as well as for the p-type RB approximation are shown
in Figure 5(a). As in the linear case, the hp approach trades reduced N for increased M . We
show the hp-RB parameter domain partition in Figure 5(b).

In Figure 6, we show for N = 45 the RB output approximations to the three outputs
(53) for three parameter values (Gr,φ) = (4000, 0.05), (Gr,φ) = (5000, 0.1) and (Gr,φ) =
(6000, 0.2). We also indicate the corresponding error bars [sk

N ,j(μ)−�k
N ,sj

(μ), sk
N ,j(μ)+
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Figure 6. The RB outputs sN ,1(tk ;μ) (bottom, solid line), sN ,2(tk ;μ) (top, solid line), sN ,3(tk ;μ)
(middle, solid line), and associated error bars (dashed lines) as functions of time for three values of
μ. (a) (Gr,φ) = (4000, 0.05) (b) (Gr,φ) = (5000, 0.1) (c) (Gr,φ) = (6000, 0.2)

�k
N ,sj

(μ)], 1 ≤ k ≤ K, 1 ≤ j ≤ 3, in which the true result sN k
j must reside. We recall that

the RB output error bounds �N ,sj are obtained as the product of the RB field error bound
�N and the dual norm of the output functional (Equation (11)).9 We remark that the accu-
racy of these hp-RB outputs is comparable with the accuracy of the p-type RB outputs
because the hp-POD/Greedy and p-type POD/Greedy calculations terminate for the same
specified tolerance. Note that time is measured in diffusive units and hence the final time
of 0.16 is sufficient to observe (at these Gr) significant non-linear effects.

The standard (p-type) RB method yields a significant Online speedup relative to the
expensive Boussinesq truth FE solves (one truth solve requires 239 seconds); nevertheless,
these p-type RB computations are still rather expensive due to the O(N4) complexity of the
RB error bound for quadratically non-linear problems. The hp-POD/Greedy method of
this article provides a significant additional speedup in the hp-RB Online stage due to the
direct control of Nmax and hence reduction in N : Online p-type RB calculation of the output
and error bound with N = 72 basis functions requires 6.48 seconds, whereas Online hp-RB
calculation of the output and error bound with M = 45 subdomains and N = 45 requires
only 0.845 seconds. Of course, Offline cost and Online storage are larger for the hp-RB
than for the standard RB: the Offline stage requires about 69 hours for the hp-RB and only
about 5.2 hours for the standard RB; the Online Dataset requires 2.3 GB for the hp-RB and
only 481 MB for the standard RB.

We finally note that the additional splitting step (‘insurance’) was invoked for 10 sub-
domains for the hp-POD/Greedy computation, and the average of Nmax,Bm , 1 ≤ m ≤ M ,
is 40.1. This suggests that ε1

tol in this case was reasonably well chosen with respect to the
target N .

Appendix A. Proof of Lemma 4.1

From Equations (16), (18) and (20), we obtain Equation (24) with ca =
Qa max2≤q≤Qa (γ qLq

a). From Equations (15), (19) and (21), we obtain Equation (25)
with cf = Qf max1≤q≤Qf (‖ f q ‖L2 Lq

f ).

Appendix B. Proof of Lemma 4.2

From Equation (4) with v = uN k(μ), we obtain
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1

�t
m(uN k(μ), uN k(μ))+ a(uN k(μ), uN k(μ);μ) = 1

�t
m(uN k−1(μ), uN k(μ))+ f (uN k(μ);μ).

(B1)

We next recall Young’s inequality AB ≤ (A2/κ + κB2)/2 (for A, B, κ ∈ R). For the first term
on the right, we first invoke the Cauchy–Schwarz inequality and then Young’s inequality
for A = m(uN k−1(μ), uN k−1(μ))1/2, B = m(uN k(μ), uN k(μ))1/2 and κ = 1 to obtain

m(uN k−1(μ), uN k(μ)) ≤ m(uN k−1(μ), uN k−1(μ))1/2m(uN k(μ), uN k(μ))1/2

≤ 1

2

(
m(uN k−1(μ), uN k−1(μ))+ m(uN k(μ), uN k(μ))

)
.

(B2)

For the second term on the right, we first invoke boundedness of f (·;μ) and then Young’s
inequality with A =‖ f (·;μ) ‖X ′ , B =‖ uN k(μ) ‖X and κ = α(μ) to obtain

f (uN k(μ);μ) ≤‖ f (·;μ) ‖X ′ ‖ uN k(μ) ‖X≤ 1

2

(‖ f (·;μ) ‖2
X ′

α(μ)
+ α(μ) ‖ uN k(μ) ‖2

X

)
≤ 1

2

(‖ f (·;μ) ‖2
X ′

α(μ)
+ a(uN k(μ), uN k(μ);μ)

)
,

(B3)

where the last step follows from coercivity of a(·, ·;μ). We combine Equations (B2)
and (B3) with (B1), invoke Equation (22), substitute k′ for k and sum over k′ to obtain
Equation (27).

Appendix C. Proof of Lemma 4.3

From linearity of Equation (5), we obtain, for 1 ≤ k ≤ K,

1

�t
m(�uk

N −�uk−1
N , v)+ a(�uk

N , v;μ2) = f (v;μ1)− f (v;μ2)

+ a(uk
N (μ1), v;μ2)− a(uk

N (μ1), v;μ1), ∀v ∈ XN .
(C1)

Next, from Lemma 4.1 we obtain

1

�t
m(�uk

N −�uk−1
N , v)+ a(�uk

N , v;μ2)

= f (v;μ1)− f (v;μ2)+ a(uk
N (μ1), v;μ2)− a(uk

N (μ1), v;μ1)
≤ cf |μ1 − μ2| ‖ v ‖X +ca|μ1 − μ2| ‖ uk

N (μ1) ‖X‖ v ‖X .

(C2)

For the first term on the right, we invoke Young’s inequality for A = cf |μ1 − μ2|, B =
‖ v ‖X and κ = α/2 to note that

cf |μ1 − μ2| ‖ v ‖X≤ 1

2

(
2c2

f

α
|μ1 − μ2|2 + α

2
‖ v ‖2

X

)
≤ c2

f

α
|μ1 − μ2|2 + 1

4
a(v, v;μ2),

(C3)

where the second inequality follows from coercivity of a(·, ·;μ2). For the second term on
the right, we invoke Young’s inequality for A = ca|μ1 − μ2| ‖ uk

N (μ1) ‖X , B =‖ v ‖X and
κ = α/2 to note that
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ca|μ1 − μ2| ‖ uk
N (μ1) ‖X‖ v ‖X ≤ 1

2

(
2c2

a

α
|μ1 − μ2|2 ‖ uk

N (μ1) ‖2
X +

α

2
‖ v ‖2

X

)
≤ c2

a

α2
|μ1 − μ2|2a(uk

N (μ1), uk
N (μ1);μ1)+ 1

4
a(v, v;μ2),

(C4)

where the second inequality follows from coercivity of a(·, ·;μ). With Equations (C2)–
(C4), we obtain for v = �uk

N ,

m(�uk
N ,�uk

N )+ �t

2
a(�uk

N ,�uk
N ;μ2) ≤ m(�uk−1

N ,�uk
N )

+ �t

α2
|μ1 − μ2|2

(
αc2

f + c2
aa(uk

N (μ1), uk
N (μ1);μ1)

)
.

(C5)

For the first term on the right, we note by the Cauchy–Schwarz inequality and Young’s
inequality for A = m(�uk−1

N ,�uk−1
N )1/2, B = m(�uk

N ,�uk
N )1/2 and κ = 1 that

m(�uk−1
N ,�uk

N ) ≤ m(�uk−1
N ,�uk−1

N )1/2m(�uk
N ,�uk

N )1/2

≤ 1

2
m(�uk−1

N ,�uk−1
N )+ 1

2
m(�uk

N ,�uk
N ).

(C6)

Hence

m(�uk
N ,�uk

N )− m(�uk−1
N ,�uk−1

N )+�t a(�uk
N ,�uk

N ;μ2)

≤ 2�t

α2
|μ1 − μ2|2

(
αc2

f + c2
aa(uk

N (μ1), uk
N (μ1);μ1)

)
.

(C7)

We now substitute k′ for k and sum over k′ to obtain

|||�uk
N |||2μ2

≤ 2

α2
|μ1 − μ2|2

(
αc2

f tk + c2
a�t

k∑
k′=1

a(uk′
N (μ1), uk′

N (μ1);μ1)

)
. (C8)

We finally note that �t
∑k

k′=1 a(uk′
N (μ1), uk′

N (μ1);μ1) ≤ |||uk
N (μ1)|||2μ1

. Hence, by Lemma

4.2 we obtain Equation (28) for C̃ given in Equation (29).

Appendix D. Proof of Lemma 4.4

From linearity of Equation (5) we obtain, for 1 ≤ k ≤ K,

1

�t
m(�uk

N −�uk−1
N , v)+ a(�uk

N , v;μ2)

= f (v;μ1)− f (v;μ2)+ a(uk
N (μ1), v;μ2)− a(uk

N (μ1), v;μ1), ∀v ∈ XN .
(D1)

We choose v = (�uk
N −�uk−1

N )/�t ∈ XN and obtain

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
tb

ib
lio

te
ke

t I
 T

ro
nd

he
im

 N
T

N
U

] 
at

 1
3:

38
 2

1 
O

ct
ob

er
 2

01
1 



Mathematical and Computer Modelling of Dynamical Systems 419

1

�t2
‖ �uk

N −�uk−1
N ‖2

L2
+ 1

�t
a(�uk

N ,�uk
N −�uk−1

N ;μ2)

= 1

�t
f (�uk

N −�uk−1
N ;μ1)− 1

�t
f (�uk

N −�uk−1
N ;μ2)

+ 1

�t
a(uk

N (μ1),�uk
N −�uk−1

N ;μ2)

− 1

�t
a(uk

N (μ1),�uk
N −�uk−1

N ;μ1), ∀v ∈ XN .

(D2)

From Lemma 4.1 we obtain

1

�t
f (�uk

N −�uk−1
N ;μ1)− 1

�t
f (�uk

N −�uk−1
N ;μ2)

≤ cf

�t
‖ �uk

N −�uk−1
N ‖L2 |μ1 − μ2|

(D3)

and

1

�t
a(uk

N (μ1),�uk
N −�uk−1

N ;μ2)− 1

�t
a(uk

N (μ1),�uk
N −�uk−1

N ;μ1)

≤ ca

�t
‖ uk

N (μ1) ‖X‖ �uk
N −�uk−1

N ‖L2 |μ1 − μ2|.
(D4)

We thus obtain

1

�t2
‖ �uk

N −�uk−1
N ‖2

L2
+ 1

�t
a(�uk

N ,�uk
N −�uk−1

N ;μ2)

≤ cf

�t
‖ �uk

N −�uk−1
N ‖L2 |μ1 − μ2| + ca

�t
‖ uk

N (μ1) ‖X‖ �uk
N

−�uk−1
N ‖L2 |μ1 − μ2|.

(D5)

We now recall from Equation (16) that a(·, ·;μ) = a1(·, ·)+ aII(·, ·;μ). We may thus write

1

�t2
‖ �uk

N−�uk−1
N ‖2

L2
+ 1

�t
a1(�uk

N ,�uk
N )

≤ 1

�t
a1(�uk

N ,�uk−1
N )+ 1

�t
|aII(�uk

N ,�uk
N −�uk−1

N ;μ2)|
+ cf

�t
‖ �uk

N −�uk−1
N ‖L2 |μ1 − μ2|

+ ca

�t
‖ uk

N (μ1) ‖X‖ �uk
N −�uk−1

N ‖L2 |μ1 − μ2|.

(D6)

Next, we apply the Cauchy–Schwarz inequality to the first term on the right and conti-
nuity to the second term on the right; we then apply Young’s inequality to each term on the
right to obtain
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1

�t2
‖ �uk

N −�uk−1
N ‖2

L2
+ 1

�t
a1(�uk

N ,�uk
N )

≤ 1

2�t

(
a1(�uk

N ,�uk
N )+ a1(�uk−1

N ,�uk−1
N )

)
+ γ

2

(
1

3γ�t2
‖ �uk

N −�uk−1
N ‖2

L2 +3γ ‖ �uk
N ‖2

X

)
+ 1

2

(
1

3�t2
‖ �uk

N −�uk−1
N ‖2

L2 +3c2
f |μ1 − μ2|2

)
+ 1

2

(
1

3�t2
‖ �uk

N −�uk−1
N ‖2

L2 +3c2
a ‖ uk

N (μ1) ‖2
X |μ1 − μ2|2

)
,

(D7)

or

1

�t
‖ �uk

N −�uk−1
N ‖2

L2
+ a1(�uk

N ,�uk
N )− a1(�uk−1

N ,�uk−1
N )

≤ 3γ 2�t ‖ �uk
N ‖2

X +3|μ1 − μ2|2(c2
f�t + c2

a�t ‖ uk
N (μ1) ‖2

X ).
(D8)

We then substitute k′ for k and sum over k′ to obtain

1

�t

k∑
k′=1

‖ �uk′
N −�uk′−1

N ‖2
L2
+a1(�uk

N ,�uk
N )

≤ 3γ 2
k∑

k′=1

�t ‖ �uk′
N ‖2

X +3|μ1 − μ2|2(c2
f tk + c2

a�t
k∑

k′=1

‖ uk′
N (μ1) ‖2

X ).

(D9)

Finally, we first invoke coercivity of a(·, ·;μ2), and then Lemmas 4.2 and 4.3 to obtain

1

�t

k∑
k′=1

‖ �uk′
N −�uk′−1

N ‖2
L2
+a1(�uk

N ,�uk
N )

≤ 3γ 2

α
�t

k∑
k′=1

a(�uk′
N ,�uk′

N ;μ2)+ 3

α
|μ1 − μ2|2

(
αc2

f tk + c2
a�t

k∑
k′=1

a(uk′
N (μ1), uk′

N (μ1);μ1)
)

≤ |μ1 − μ2|2 3

α2
(γ 2αC̃2 + tkα2c2

f + tkc2
a max
μ∈D
‖ f (·;μ) ‖X ′ ).

(D10)

The desired result thus follows because a1(�uk
N ,�uk

N ) ≥ 0.
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Notes
1. In the linear case b = 0, and it thus follows from Equation (9) and the definition

of τLB
N (we recall that a(·, ·;μ) is coercive) that Equation (10) simplifies to �k

N (μ) =
( �t
αLBσLB(μ)

∑k
k′=1 εN (tk′ ;μ)2)1/2.

2. We refer to [12,15] for details on the Construction–Evaluation procedure for the computation of
lower bounds for the stability constants – a Successive Constraint Method (SCM).

3. We note that (χ i,χ j)X =∑K
k=1

∑K
l=1 ψ

i
kψ

j
l (w

k , wl)X = K(ψ i)TCψ j = δi j.
4. We note that after completion of the hp-POD/Greedy, we can apply the SCM algorithm indepen-

dently for each parameter subdomain; we thus expect a reduction in the SCM (Online) evaluation
cost because the size of the parameter domain is effectively reduced.

5. We suppose here for simplicity that ‖·‖X=‖·‖H1 ; hence ‖ v ‖L2≤‖ v ‖X for all v ∈ X .
6. In fact, we should interpret M here as the number of subdomains generated by Algorithm 4.3 so

far; the VBm , 1 ≤ m ≤ M , are not necessarily the final M subdomains. With this interpretation,
we thus do not presume termination of the algorithm.

7. Equation (16) is satisfied with aII(w, v;μ) = ∫
�

(V (μ) · ∇w)v. We note that aII is L2(�) contin-
uous in its second argument because by the Cauchy–Schwarz inequality aII(w, v) ≤ (

∫
�

(V (μ) ·
∇w)2)1/2(

∫
�

v2)1/2.
8. To ensure a good spread over D of the rather few (25 or 64 for our two examples) initial train

points, we use for �train,(1) a deterministic initial regular grid. (For the train sample enrichment,
we use random points.) As some train points belong to a regular grid, the procedure may produce
‘aligned’ subdomain boundaries, as seen in Figure 3.

9. We note that supv∈XN �n(v;μ)
‖v‖

L2
= 1

μ1|Dn| supv∈XN
∫
Dn v

‖v‖
L2
≤ 1

μ1
√|Dn|

√∫
Dn v2∫
� v2 ≤ 1

μ1
√|Dn| .
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