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Abstract

Generalized polynomial chaos (gPC) methods have been successfpligd
to various stochastic problems in many physical and engineering fietnigeVer,
realistic representation of stochastic inputs associated with various smfras-
certainty often leads to high dimensional representations that are cdiopaty
prohibitive for classic gPC methods. Additionally in the classic gPC methods,
the gPC bases are determined based on the probabilistic distribution cdstioch
inputs. However, the stochastic outputs may not share the same praizahidisi-
bution as the stochastic inputs. Hence, the gPC bases may not be the bpsesl
for such systems, which causes the slow convergence of gPC médtrosisch
stochastic problems. Here we present a general framework thatdteeghe adap-
tive ANOVA decomposition technique and the data-driven stochastic metho
alleviate both of the two limitations. To handle high-dimensional stochastic prob
lems, we investigate the use of adaptive ANOVA decomposition in the stiichas
space as an effective dimension-reduction technique for high-dioreistochas-
tic problems. Three different ANOVA adaptive criteria are discussed.

To improve the slow convergence of gPC methods, we use the datdriv
stochastic method (DDSM) which was developed by Cheng-Hou-Yan.if fbs
method has an offline computation and an online computation. In the oftime c
putation, optimal gPC bases are obtained by KarhunéndK-L) expansion
of the covariance matrix of stochastic outputs obtained by ANOVA-bagsas-
grid PCM. In the online computation, a Galerkin-projection based gPC metho
with the optimal bases developed in the offline computation is employed, which
greatly speeds up the convergence. Numerical examples are fe$enone-

, two-dimensional elliptic PDE with random coefficients, and a two-dimesion
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Helmhotz equation in random media (Horn problem) to show the accuraty a
efficiency of the developed adaptive ANOVA-based DDSM method.

Keywords: Analysis of variance, Karhunene expansion, uncertainty quan-
tification, high dimensions, sparse grids.

1 Introduction

There has been growing interest and significant progresslwgast decades on mod-
eling complex physical, and engineering systems with uaggies. However, in the
simulation of real physical randomly heterogeneous systamealistic representation
of stochastic inputs associated with various sources ofmainty often leads to high
dimensional representations that are computationallpipitive for many numerical
methods, such as generalized polynomial chaos (gPC) ne{38§l and probabilis-
tic collocation method (PCM) [37]. In this paper, we presargeneral framework
that combines the ANOVA decomposition technique with theerdly developed data-
driven stochastic method (DDSM) [5] to alleviate the curkdimensionality and slow
convergence issues of gPC methods. For stochastic problémbigh stochastic di-
mensions, we employ the functional ANOVA (ANalysis-Of-\fAnce) method [15, 2]
as a dimension-reduction technique. The ANOVA decommmsitvas introduced by
Fisher [8]. Later, Hoeffding in 1948 successfully apply AMOdecomposition to
study U-statistics [16]. This method is motivated by theeskation that for many real
physical systems, only a relatively small number of stottbaimensions are impor-
tant and will significantly impact the outputs of the stodiasystems. ANOVA has
also been used for uncertainty quantification in [36] andevaployed in gPC for solv-
ing high-dimensional stochastic PDE systems in [9, 24, 281439]. In [9] ANOVA
was integrated with a multi-element PCM. In [24], an adaptrersion of ANOVA is
developed to automatically detect the important dimerssitm[39], adaptive ANOVA
methods based on three different adaptive criteria wenegsed and compared.

The ANOVA decomposition results in a set of low-dimensiosab-problems in
stochastic space. A sparse-grid PCM is used to solve theselitnensional sub-
problems efficiently. The PCM was first introduced by Tatand lslcRae [33]. Rrecently
Xiu and Hesthaven [37] have used a Lagrange polynomialgnotation to construct
high-order stochastic collocation methods. The properiePCM were extensively
studied in the past0 years. In [26, 27, 1], the errors of integrating or interpioig
functions with Sobolev regularity were analyzed for Smklganstructions based on
the one-dimensional nested Clenshaw-Curtis rules. In, &g degree of exactness
of the Smolyak quadrature using the Clenshaw-Curtis ands§ian one-dimensional
rules was investigated. In [37], the efficiency of the ClenstCurtis-based sparse grid
stochastic collocation was demonstrated by comparinglt @ther stochastic methods
on an elliptic problem. In 2003, Gerstner and Griebel [12jdduced the dimension-
adaptive tensor product quadrature method. In [10], spgridecollocation schemes
were applied to solve stochastic natural convection probleln [21, 22, 18, 13], a
multi-element PCM was employed to study the random roughpesblem, stochas-
tic compressible flow and plasma flow problems. In [14, 23]Jadaptive hierarchical
sparse grid collocation algorithm has been developed.



In the classic gPC methods, the gPC bases are determinetidrate probabilistic
distribution of stochastic inputs. DDSM is inspired by tlaetfthat the stochastic out-
puts may not share the same probabilistic distribution astbchastic inputs. Hence,
the distribution used for sparse-grid PCM may not be thewgdtdistribution to repre-
sent the solutions of such systems, which causes the slovegance of sparse-grid
PCM for such stochastic problems. To overcome this difficuite use DDSM [5] to
obtain a set of problem-dependent optimal gPC bases tolysgeted up the conver-
gence. The number of gPC modes to achieve a specified acaigagyn the ANOVA-
based DDSM is much smaller than the classic gPC method, vgnedtly reduces the
computational cost. In this work, an ANOVA-based DDSM is@eped, which can be
considered as a stochastic extension of the Proper Orthb@mtomposition (POD)
methods [31, 35], the original DDSM of Cheng-Hou-Yan [5]ddhe Multiscale Finite
Element methods [17]. DDSM has an offline computation andrdime® computation.
In the offline computation, optimal gPC bases are obtaineddmunen-Lé&ve (K-L)
expansion of the covariance matrix of stochastic outputainbd by ANOVA-based
sparse-grid PCM. In the online computation, a Galerkirjgmion based gPC method
with optimal bases developed in the offline computation ipleyed, which accelerates
the convergence rate considerably.

The remainder of the paper is organized in the following vesgtion 2 describes
the standard ANOVA decomposition, section 3 presents th&MPSection 4 intro-
duces the ANOVA-DDSM. Section 5 shows the results obtairsgtguANOVA-DDSM
and section 6 summarizes the findings.

2 Sparse-Grid Based Probabillistic Collocation Method

The general procedure for the PCM approach is similar to Mukitions, with a
difference in selecting the sampling points and correspandeights. The procedure
consists of three main steps:

1. GenerateV, collocation points in probability space of random paramsetes
independent random inputs based on a quadrature formula;

2. Solve a deterministic problem at each collocation point;

3. Estimate the solution statistics using the correspandiradrature rule,

(ul, 1)) = /F a1, O)p(€)de 1)
N,
~ Z €T, t gk Wi, (2)
\/ /F u(@, 1, €) — (u))2p(€)de 3)
N.
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wherep(¢) is the probabilistic distribution function (PDF) of randomriables, N, is
the number of quadrature points;;, } is the set of quadrature points afidy, } is the
corresponding set of weights, which are the combinatioruafigature weights in each
random dimension. In the second step of the PCM approacloy &G, any existing
code can be used to solve deterministic flow-and-transpprateons. Extensive re-
views on the construction of quadrature formulas may bedanr6] and [7]. Below,
we provide a brief review of two different methods for seilegtcollocation points.

In this work, we use the Smolyak formula [32] to construct tlolocation point
set, which is a linear combination of tensor product forrapéand the resulting point set
has a significantly smaller number of points than the fulsterproduct set. Recently,
researchers [37, 19, 20] have used Lagrange polynomiapwitgion to construct high
order stochastic collocation methods based on sparseugiidg the Smolyak formula
[32]. Such sparse grids do not depend as strongly on the dioratdity of the random
space and as such are more suitable for applications witirdilgensional random
inputs. Detailed description on how to build the collocatfmint set can be found in
[37, 19, 20].

3 Data-Driven Stochastic Method
Consider the stochastic PDE

ﬁ(X, UJ)U(X, UJ) = f(l) )

wherex € D,w € Q andL(x,w) is a stochastic differential operator. The stochastic
ingredient resides in the differential operatfix, w) while f(z) is purely determinis-
tic. The authors heuristically argue that the bases onlgdeé@n.(x,w). Generally
speaking, the bases can be obtained by solving (5) for orieylar f(x) in offline
part. Then this set of bases could be used to solve othergimshlvith different com-
plicatedf (z).

Inspired by multiscale finite element method [17] and prop#hogonal decom-
position (POD) method [31, 35], Cheng-Hou-Yan proposedem algorithm, called
Data-Driven Stochastic Method [5]. The authors tried tddup gPC bases under
which the stochastic solutions have a sparse decompobitised on Karnunen-leve
(K-L) expansion. Fou(x,w) € L?(D x Q), its K-L expansion reads as follows

u(x,w) = Efu] + Y v/ Aiki(w)ei(x), (6)
=1
where{\;} and{¢;(x)} are the eigenpairs of the covariance ker@i¢k,y), i.e.
[ ctxyiotydy = r60x). ™
and{¢;(w)} are random variables defined as
) = 7= [ (ubxw) ~ Elul)o (x)ax ®)
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Moreover, these mutually uncorrelated random variabfego) } satisfy
E[&] =0, E[£&] = 04 9)

In numerical practice, only a finite series expansion is éethplepending on the decay
rate of the eigenvalues,

N
u(x,w) = Efu] + Z Vi (w)di(x). (10)

For a given covariance function, the decay rate of the emerg depends inversely
on the correlation length. Long correlation length implileat the random process is
strongly correlated and results in a fast decay of the egjaeg. A weakly correlated
process has short correlation length and results in a sl@aydef the eigenvalues.
Under some assumptions [30], the eigenvalues in K-L expandecay exponentially
(or sub-exponentially) fast in dimensian= 1 (ord > 1).

This algorithm consists of offline part and online part. Iflioé part, a set of
gPC baseg A;(w)} are obtained based on K-L expansion. In online part, thefset o
gPC bases are used to solve a set of coupled deterministis BDd®efficients in the
stochastic expansion. It should be noticed that in this éaork the set of gPC bases
are problem-dependent.

3.1 Offline computation

The purpose of offline computation is to obtain a completetglPC bases based on K-
L expansion of the stochastic solutions. Instead of usingtgl@arlo (MC) simulation,
which only has a convergence ratelgh/ N, we combine sparse grid method and K-L
expansion in order to expedite the computation in high dsieral problem. In this
part, we obtain not only the gPC bases numerically, but alsarity of statistical
information on this set of basgs4;(w)}, such as expectation afx, w)A,;(w)A;(w)
and moments

N
ELAiA;Ax] = 5 3 AiCon)dj(n) Ak(en).
n=1

In order to construct the covariance functioix, y), we need to sample stochastic
solutionu(x, w). First, we expand(x,w) using polynomial chaos expansion:

u(x,w) =Y ()9 (w). (11)
Then by orthogonality of+; (w)}, we have
50 = [ ulx,) ) de (12)
Q
The integral (12) can be approximated by sparse grid method,

j(x) = Z w; i (X, w;i ) (wi), (13)



where{w;} are Smolyak sparse grid points;;(x,w;)} are corresponding solutions,
and{w;} are integration weights associated with;}. Once{;(x)} are obtained,
we can sampleV solutionsu(x,w) using K-L expansion (11). Then the mean and
covariance are computed

1 N
’l_l,(X) = N Z U(X, wi)a (14)
1 z;Vl
C(X7 y) = N Z u(x7 wi)u(y7 wi) - ’EL(X)ﬂ(y) (15)

Afterward, the first\/ eigen-pairs are solved

Finally, the gPC basesA4, (w)} are obtained by

1
VA

Remark 1 It is easy to verify that each basis;(w) has mean zero anflA; (w)}
are mutually orthogonal.

Ai(w) = /D (u(x,w) — (%)) i (x)dx. (17)

3.2 Online computation

In this part, we only solve deterministic equations sindeha statistical information
has been obtained in the offline part. This means that the@obbmputation could be
fast. The based,;(w) spans a finite-dimensional subspace.i{(2). Therefore, we
can project the stochastic solutiefix, w) onto this subspace, i.e.

M
u(x,w) & Y ui(x) A (w). (18)
=0

For simplicity of notation, Ay = 1 andug(x) = E[u(x,w)].
In order to obtain the coupled deterministic equationse@ah projection is uti-
lized. Multiplying (5) by A;(w) and taking expectation on both sides give us

M
Y EIL(x,w)Ai(w)A; ()] ui(x) = E[f(x)4;(w)], j=0,---,M.  (19)
i=0

4 ANOVA Expansion

In statistics, ANOVA method can be used to describe the actens between a large
number of variables while only few samples are available.e Tame idea can be
adopted in the interpolation and integration of high diniemal problems as well as



stochastic systems. For most well-defined physical systery, relatively low order
correlations of the input variables are expected to be itapbfor the output of the sys-
tem. The ANOVA expansion utilizes this property and at eaeWw tevel of ANOVA
expansion, higher order correlation effects of the inputaldes are accounted for.
Consider a Lebesgue integrable multivariate stochastiction f(Y) : R? — R andd

is the dimension of stochastic space we are interested iO\VW¥\expansion represents
f(Y) as finite hierarchical correlated functions of input valéstin the form of

d
FO)=fo+> > fi (Vs Y50), (20)
s=1j1<<js

or equivalently

f(Y):f()+ Z fjl(y}1)+ Z fjl-,jQ(}/}17}/j2)+...

1</ <d 1</1<j2<d

+f1,2,---,d(Y1;}/27"' aYd)' (21)

We call f;, (Y;,) the first order termf;, ;, (Y;,,Y;,) the second order term, etc. .
The ANOVA components have the following properties:

1. The constant term is the mean of function, that is

fo= [, 1V )au¥) 22)

which means that all higher order components have mean zero
/ fjly...yjsd,u(Y) =0 forl<s<d. (23)
Fd

2. The other important property of ANOVA expansion is théhogonality among
its terms

[ A (24)
if (j1,---,J4s)# (k1, -+, k). This is the direct consequence of (23).
3. The variance of is the sum of variance of all component functions

d
() => *fs) (25)

s=1 |s‘:5

It is worth pointing out that equation (25) holds only whee tineasure used in the
calculation of variance, i.e. the integral with Lebesgueasuge, is the same as that in
ANOVA decomposition.



Remark 2 It could be extremely expensive to compute ANOVA deconguofst high
dimensionalf (Y). Therefore Dirac measure is adopted instead of Lebesgusumea
i.e.du(Y) = 6(Y —c¢)dY, c € I'’. The special point is termed anchor point. How-
ever, it is difficult to calculate anchor poirt such thatf, = f(c) = f(Y). In this
paper, we take anchor poirtto be the mean of random variab¥ as an approxima-
tion. In this case, the proper{22) and (23) do not hold any more. Additional terms of
ANOVA decomposition are needed to improve the mean.

The measurel;(Y) determines the particular form of each component function
following the notation in [29, 28]. We introduce a projectioperatorPs : I'¢ — T'lsl

Puf(Y)i= [ F(Y)dun(Y) (26)
Td—Is
wheredpps == [L;cr igs i (Y3)-
Therefore, each ternfy can be recursively defined by

fo(Ys) = Psf(Ys) = Y fo(Ye). (27)

tCs

4.1 Adaptive ANOVA

When the nominal dimension of the stochastic problem inegahe computational
complexity of the standard ANOVA becomes prohibitive tolaa#e all the terms. For
example, for nominal dimensiaN = 100, the number of terms for 2nd order ANOVA
decomposition needed to calculatelis- 1(1)0> + <1(2)0> = 5051. Nevertheless,
in many stochastic problems, most of the interactions andiffierent dimensions are
usually weak and have little contribution to the stochastitputs. This means that
the active dimension of those stochastic problems is snitierefore, an adaptive
approach can be employ to solve those problems efficientlyout losing much accu-
racy.

There are many “adaptive” approaches and the one we empltyisrpaper is
obtained by replacing the nominal dimension by an activeedision, i.e., we modify
(21) to be

f(Y)%fU—'_ Z fj1(}/}1)+ Z fjl-,jQ(}/j17}/‘vj2)+..-

j1<Dy (j17j2)€.7:2

Y Fhdeee g (Vi Yig oY), (28)

(J1,32+:3v)EFV

In practice, D, is usually set to béV andv = 2. That is all first order terms are
calculated so that some criterion could determine theFsetccording to the property
of the specific problem. However, the criteria in [25, 39] slo®t specify how many
the active dimensions there are a priori. Hence there magdendant dimensions
which are actually not active dimensions. Motivated by tH2SIM method, the fast
decay of eigenvalues in (7) can serve as an appropriatesitadiof the convergence of
K-L expansion in terms of optimal gPC bases.



First, we describe two popular adaptive criterion listed4s, 39]. Then a new
criterion is proposed in criterion 3.

Criteria 1: LetT; = Z;.V:l o?(f;), which is the sum of the variance of all the
first-order terms. Assume that the first order terms aredstteh that2( f;) is mono-
tonically decreasing. The active dimensiba should satisfy:

D>

> % (f5) = pTh. (29)

j=1
wherep is a proportionality constant with < p < 1 and very close to 1. This criterion
is similar to the criterion used in [3] where?(f) instead ofT; is used on the right
hand side of (29) and s set to be).99. The setF can be found by computing

R 2(f]1]z)
MNjr.j2 = le 0'2(f]) (30)

and boundingy;, ;, with a predefined error threshold.
Criteria 2: Ma and Zabaras use the mean of component fungti@s the indicator
to decide the active ANOVA terms [25]. Let

E(f5)
nj = foj )
where the predefined error threshéldis used to bound;, i.e.,n; < 6, for someJ.

If n; are monotonically decreasing with respecj @nd we setD, > J, then (31) can
equivalently be written as

(31

Do N
SCE(f) =p > E(f), (32)
j=1 j=1

wherep = 1 — 6;. Then, for a further selection of the second-order terms,akiic
Zabaras also use the mean of the component functions:

. (fjl ]2) 33
Mj1.j2 = Z] ()E(fj (33)
wheren;, ;, is bounded by a predefined error threshld
Criteria 3: Combining all above, we propose a new criterion, which tséiects
active dimensions. First, eigenvalugsof covariance kernel’(x, y) in equation (7)
are obtained and sorted, i.&.y > X\ > ---. Then we pick the number of active
dimensionsD, such that

>\i/)\1>A7i:17"'7D27 (34)

whereA is a predefined threshold. The dimensions with lardg&seither variance or

mean are selected as active dimensions. Further seledtitve second dimensions
F» could be accomplished by (30) or (33) accordingly. Our nicaéexamples of 1d

and 2d Elliptic PDE with random coefficients show that thigecion is much more

efficient by the fact thaD, is much less than that in Criteria 1 or 2.



Remark 3 When we employ the above criteria to applications we reptheemean
and deviation of component functigj with their L, norm values on the physical
domain.

5 (Adaptive) ANOVA-based Data-Driven Stochastic Method
(ANOVA-DDSM)

In this paper, we solve high dimensional stochastic problesntaking advantage of
(adaptive) ANOVA method and data-driven stochastic methiear large dimension
d > 1, the rate of convergence in many stochastic methods, subhoate Carlo
method, Wiener Chaos Expansion method (WCE), etc. , detée®drastically. This
poses a numerical challenge because it requires a huge nainsienulations of the
underlying deterministic system. This is the well-knowmsguof dimensionality. The
data driven stochastic method also has this problem sireaudmber of gPC bases
M increases fast if the dimension of the stochastic problelarge. The following
algorithm is proposed to deal with high dimensional stotibasoblems efficiently.

Algorithm 1 ((Adaptive) ANOVA-DDSM algorithm)
1. Expand stochastic solutiar{x, Y) in ANOVA decomposition

(X Y + Z u]l Z Ujy 52 (X YJMYJQ) )
Jji=1 1Sj1<47‘2Sd
(35)
or adaptive ANOVA decomposition
(X Y + Z u]l Z Ujy,52 (X YJl?YJz) +oee
=1 (Jl»j2)€-7:2
(36)

where the sef; is selected according to Criterion 3.

2. Solve for the mean termy(x) which satisfies a deterministic equation by re-
placing random variable¥ with anchor point in the stochastic PDE,

L(x, cJuo(x) = f(x). (37)

3. For each high order term;, ;, ... ;. (Y;,,Y},,---,Y;,), DDSM is utilized to
calculate the solution efficiently W|th different deternsitic forcing termf(z).
For different f(z), the same gPC bases, which have been constructed in the
offline part for each term in ANOVA decomposition, can be ussgkatedly.

Remark 4 In practice, only second order or third order terms are negate(adaptive)
ANOVA expansion for good accuracy of mean and variance.

Remark 5 In calculating each term in ANOVA expansion, several gP@basuld be
enough for accuracy requirement. This essentially expeditir computation.
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6 Numerical examples

As explained in previous sections, we can reduce a high diroeal stochastic prob-
lem into a system of low dimensional problems using (adaptMNOVA decomposi-
tion. For each low dimensional problem, it is significantfficgent to solve each low
dimensional problem in terms of CPU time and memory cost.

6.1 1D Stochastic Elliptic PDE in 4d Random Space

We test the ANOVA-DDSM algorithm on a 1D stochastic EllipB®E with 4 sources
of randomness as follows

0 0
- (ate) e = 160), (38)
u(z,w) =0, =z =0andx=1.
The stochastic coefficient(z, w in Eq. (38) is chosen to be
4
a(z,w) =1+ Ci&(w)(sin(Dimz) + 1), (39)
1=1
where
C =[0.1,0.12,0.2, 0.15], D =[1.2,2.3, 3.1, 4.3], (40)

and {¢;} are uniform i.i.d. random variables ii0,1]. We run107 realizations of
Monte Carlo as the exact solutian,c (x, w). The DDSM gPC base&4;(w)}, are
constructed using (z,y) = 1 and then are used to solve the stochastic Elliptic PDE
with f(z,y) = sin(27x) + 5sin(4my). The relativeL, error of mean is defined as

o - (%) — tnre (%)) 19
" [anre (%),

: (41)

and relativeL, error of variance is

€, = ||Var (u) — Var (UMC)HL2 ) (42)
[[Var (uaro)l| o

The relative error of mean is shown in Fig. 1. The constamhtéoes not repre-
sent the mean of the stochastic solution well since the arbiat ¢ is not optimal.
Therefore, additional terms are necessitated to improgeatituracy of ANOVA ap-
proach. Note that the stochastic coefficiefi,w) is an additive function of random
variables; (w). Then the first order expansion is enough to represent thii@oland
its mean [25], which is shown in Fig. 1. This plot indicateattincreasing the ex-
pansion order does not improve accuracy dramatically. Mae it only has limited
effect on the accuracy of mean by including more gPC base®d@des) in expansion
(18). First order ANOVA expansion and 4 or 5 stochastic matesgood enough to
approximate the mean of solution. However, higher order XNN@ecomposition and
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Figure 1: Relative error of mean of one dimensional elliptieE with 4 random vari-
ables. The exact solution is computed with realizations.

more stochastic modes are required to represent the vanaeit. As shown in Fig.

2, second order of ANOVA decomposition and 6 bases are ndedmgaproximate the
variance of stochastic solution. Contrast to the meaneasing the order of ANOVA
decomposition and/or number of stochastic bases do imphevaccuracy of variance.
In practice, unless otherwise stated, we take second orN€NA expansion and 6
gPC bases in our calculations.

6.2 1D Stochastic Elliptic PDE in High Dimensional Probabilstic
Space

In this subsection, we consider 1D stochastic Elliptic PBB)(in 100 dimensional
probabilistic space. The stochastic coefficiefit, w) now reads as

100

a(z,w) = Z Ci&i(w)(sin(D;mx) + 1), (43)

where{¢; } are uniform random variables j0, 1] andC; € (0,0.001) andD; € (0, 10)
are randomly generated. We ruf realizations of Monte Carlo as the reference solu-
tion upsc(x,w). The DDSM gPC basesd; (w) 4, are constructed usingfz,y) = 1
and then are used to solve the stochastic Elliptic PDE wiith, y) = sin(27zx) +
5sin(4my).
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Figure 2: Relative error of variance of one dimensionapétti PDE with 4 random
variables. The exact solution is computed wiitif realizations.

Table 1: Comparison of adaptive ANOVA-DDSM using differ&riteria

relative error of mean relative error of # of active terms
Criterion 1
(p=0.9,n;,,;,=1E-5) 2.04E-2 2.14E-2 151
Criterion 3 A=1E-3 A=1E-5 A=1E-3 A=1E-5 A=1E-3 A=1E-5
3.60E-2 2.23E-2 2.21E-2  2.15E-2 111 146

The decay of\;/\; is shown in Figure 3. Onlg dimensions are active if =1E-
3 and10 dimensions ifA =1E-5. However, if we pickp = 0.9, the numbers of
active dimensions argl and87 for Criterion 1 and 2 respectively. Thus, the numbers
of second order terms needed to be computedi &3¢ and 3741 respectively. The
computations of all these terms are necessary, althoughuimber of active terms
in second order could be further shrinked by imposing somestioldy;, ;, for the
relative variance or mean in Criterion 1 or 2. In contrastCiiterion 3, the active
dimensions have been identified beforehand for some preditimeshold\. Thus the
number of second order terms needed to compute is signifessit

The comparison using Criteria 1 and 3 is listed in Table 1.nftbis table, it is
clear that, using different criteria, the numbers of findiacterms are almost the same
and so are the relative errors of mean and standard deviation

The profile of mean computed by second order adaptive ANOWSDM using
Criterion 3 is compared with MC method in Fig. 4. It can be s#wt the profile

13



I max

AN

Figure 3: The decay of sorted relative eigenvalues of camag kernel for a 1D Elliptic
PDE with random coefficient in 100 probabilistic dimension.

matches the reference solution very well. However, thedstahdeviation of ANOVA-
DDSM is a little lower than MC as shown in Fig. 5. Higher ordeaptive ANOVA

decomposition can definitely improve the accuracy of steshdaviation. But it brings
considerably more amount of computations.

6.3 Horn Problem

In this subsection, we extend our method to 2-d Helmholtagqo in random media,
the planar acoustics horn problem described in detail i [3#e full domain is de-
picted in Fig. 6, which comprises both the horn proper andgelaircular segment.
The governing equations for the (complex) pressure are then

V2p(z,y,w) + k(1 + n®(z,y,0))p(z,y,w) = 0, (44)
with boundary conditions

Jp

— —ikp=0 onTl
on IRp 1,
dp
— =0 onl
it 2

p(mvva):f(x7y) Onr?n
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Figure 4: Comparison of mean of one dimensional elliptic PRiEh 100 random
variables by Adaptive ANOVA-DDSM using Criterion 3 and Merarlo simulation.
A =1E-5 and 10 active dimensions.

0.16

0141 = a-ANOVA-DDSM

-~ MC

0.12

standard deviation o
2
©

Figure 5: Comparison of standard deviation of one dimeraieliptic PDE with 100
random variables by Adaptive ANOVA-DDSM using Criteriont8&EMonte Carlo sim-
ulation. A =1E-5 and 10 active dimensions.

15



whereii is the unit outer-pointing normal of the boundakyis the wave number and
n?(z,y,w) is the random reflectivity of the media. In this example, tedom reflec-
tivity of the media is chosen to be

2(2,y,w Z& i@, y),

where{¢;(w)} are i.i.d. uniformly distributed random variable|ii 1] and functions
{i(w,y)} are given by

Y1 (z,y) = sin?(2mz + 61) sin® (27y + 63)
o (2,y) = sin?(4mz + 03) sin® (47y + 04)
V3(x,y) = sin?(6mx + 05) sin” (4my + )
Yy, y) = sin®(6ma + 07) sin® (67y + 0g)

with phase{6;} being randomly generated.

The DDSM gPC base$§A;(w)}M; are constructed using(z,y) = 1 and then
are used to solve the stochastic horn problem with, y) = sin(27z) sin(27y) + 2.
In this examplek is taken to be).7. Only 6 gPC bases and second order ANOVA
decomposition are used. In Fig. 7, the comparison of redlgfanean contours of
pressure by ANOVA-DDSM and MC methods is shown. As expedtezlmean could
be approximated accurately even using only second order\®N\g&@composition in
this example. However, the difference of standard dewiaionoticeable, especially
outside the horn proper and the region right of center. Agais is mainly due to the
lower order of ANOVA decomposition. Accuracy of deviatiooutd be compensated
by employing higher order ANOVA decomposition and/or moRCgbases. Adaptive
ANOVA method could be utilized if computational cost is higleoncerned and high
accuracy is required.

6.4 2D Stochastic Elliptic PDE in High Dimensional Probabilstic
Space

Finally, We consider a 2D stochastic Elliptic PDE with a rarmdcoefficient in 50
dimensional probabilistic space

-V (a(:my,w)Vu(;L',y,w)) = f(xay)a (45)
u(z,y,w)lop = 0.
The stochastic coefficientz, y,w) is defined as

50
G(LI}, y7w) = Z Digi (Sin(Eiﬂ-x + Fzﬂ-y) + 1) ) (46)

i=1

where{¢;} are uniform random variables [f, 1] and the constant parameters are ran-
domly generated; € [0,0.01], E;, F; € [5,10]. Adaptive ANOVA-DDSM methods
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Figure 6: Geometry of horn problem

DDSM mean

Figure 7: Comparison of real part of mean contour in horn jgmob Left: ANOVA-
DDSM method. Right: Monte-Carlo simulation.
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mean_error

Figure 8: Error of real part of mean contour in horn problem.

DDSM std

Figure 9: Comparison of standard deviation contour in hoablem. Left: ANOVA-
DDSM method . Right: Monte-Carlo simulation.
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Figure 10: Error of standard deviation contour in horn peofol
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Table 2: Comparison of adaptive ANOVA-DDSM using differ&riteria

relative error of mean relative error of # of active terms
Criterion 1
(p=0.99,n;, ;,=1E-5) 3.60E-3 5.70E-2 201
Criterion 3 A=1E-3 A=1E-4 A=1E-3 A=1E4 A=1E-3 A=1E4
4.60E-3 4.40E-3 6.72E-2  6.18E-2 61 96

using different criteria are employed to solve this prohlelhe DDSM gPC bases
{A;(w)}M, are constructed usinf(z,y) = 1 and then are used to solve the stochas-
tic Elliptic PDE with f(z, y) = sin(27z) sin(27y) + 2. Monte-Carlo results with 05
realizations are served as reference solutions. The déogfeigen-values of covari-
ance kernel in Fig. 11 indicates that there are 5 active déioes if\; /\; >1E-3 and
10 active terms if\;/\; >1E-4 in Criterion 3. For Criterion 1, the parameteis set
to be0.99, which results in 25 active dimensions. Then total 300 seéader terms
are computed. Itrequire)1 terms in total for;, ;,y =1E-5 to be calculated towards
approximating stochastic outputs. In contrast, to achibeesame order of accuracy
for both mean and standard deviation, there are 6hlgnd96 terms needed in total
for A =1E-3 andA =1E-4, respectively. The comparison results are summaiized
Table 2.

In Fig. 12, the contour of mean computed by adaptive ANOVASDDusing Cri-
terion 3 with 10 active dimensions is plotted and comparet thiat by MC. In terms
of mean, adaptive ANOVA-DDSM performs well. To further demstrate the conver-
gence of mean, we plot the error contour of mean in Fig. 13s $Thows clearly that
the magnitude of error is of orden—2. In addition, we plot the mean contour lines
of stochastic solutions given by adaptive ANOVA-DDSM and hd=ig. 14. Again,
the contours match very well. All the above have shown thaO¥N-DDSM captures
mean accurately.

In Fig. 15, the contour of standard deviation computed byptida ANOVA-
DDSM using Criterion 3 with 10 active dimensions is plottedi@ompared with that
by MC. Adaptive ANOVA-DDSM can capture the correct pattefthe standard devi-
ation. However, the magnitude is slightly lower. This isicaded in Fig. 16, where the
error of standard deviation is plotted. In order to furthieistrate this, the contour lines
of standard deviation are shown in Fig. 17. The closer to &mter of the domain, the
larger the solution is. In this plot, the contour lines of jiilze ANOVA-DDSM are
closer to the center than those of MC, which means that thatil@v calculated by
adaptive ANOVA-DDSM is smaller. This is mainly due to theléwing two facts.
First, only 10 active dimensions in adaptive ANOVA decomposition are aered
and this is just an approximation of the standard ANOVA degosition. Secondly
and more importantly, only second order decomposition igleyed. Using higher or-
der adaptive ANOVA decomposition could improve the accyafstandard deviation,
but it would take much more computational cost.
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I max

Figure 11: The decay of sorted relative eigenvalues of ¢anvee kernel for a 2D
Elliptic PDE with random coefficient in 50 probabilistic démsion.
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DDSM mean

2.4
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Figure 12: Comparison of mean contour of 2D stochastic #lipDE. Left: adaptive
ANOVA-DDSM method using Criterion 3. Right:Monte-Carlawilation. A =1E-4
and 10 active dimensions.
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Figure 13: Mean error contour of 2D stochastic Elliptic PDE.
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Figure 14: Contour comparison of mean contour of 2D stoah&dliptic PDE.
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Figure 15: Comparison of standard deviation contour of Zigtsastic Elliptic PDE.
Left: adaptive ANOVA-DDSM method using Criterion 3. Rigihonte-Carlo method.
A =1E-4 and 10 active dimensions.
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Figure 17: Contour comparison of standard deviation carab@D stochastic Elliptic
PDE.
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7 Conclusion and Discussion

In this paper, a novel adaptive ANOVA-based data-drivenhwoetis developed for
solving high-dimensional stochastic elliptic equatioisiag from various applications,
such as the randomly heterogeneous porous media flow problesrdeveloped method
has an offline computation and an online computation. In fflen@ computation,
adaptive ANOVA decomposition technique is applied to adept decompose the
original high dimensional problem into a set of low-dimemgl sub-problems. By
modeling the behavior of stochastic systems with only thet few lower-order terms
of the high-dimensional input, adaptive ANOVA is able to @éntly represent the
output response to the high-dimensional inputs with sptifood accuracy. This
results in a set of low-dimensional sub-problems in sto@hapace, which are effi-
ciently solved by sparse-grid PCM. Numerical examples t&amvn that solving the
set of low-dimensional sub-problems is more efficient thalrisg the original prob-
lem. Three different ANOVA adaptive criterion are discuksdumerical tests indicate
that the third adaptive criteria gives the best approxiomatvith minimal computational
cost.

Numerical examples involving both one-, two-dimensiorlptc PDE with ran-
dom coefficients, and a two-dimensional Helmhotz equatiorandom media (Horn
problem) have been conducted to verify the accuracy andesftig of the developed
adaptive ANOVA-based DDSM method. In the offline computatiéor stochastic
problems with fixed number of stochastic dimension, the remalb component func-
tions needed in adaptive ANOVA decomposition depends omtpertant dimensions
with respect to the stochastic outputs and the varianceeokthchastic inputs. For
real physical high-dimensional stochastic problems wjgthtw500 — 600 stochastic
dimensions [9, 25], adaptive ANOVA decomposition integdhtvith sparse-grid PCM
can achieve much better convergence rate than both the Mkamte and sparse-grid
PCM. However, it is worthwhile to note that adaptive ANOVAcdenposition may not
be recommended to approximate mathematical functionsenddedimensions are im-
portant. Additionally, sparse-grid PCM is determined lobse the probabilistic distri-
bution of stochastic inputs. However, due to the nonlirtgaf the complex stochastic
systems, the numerical solutions may not share the samalgliskic distribution as
the stochastic inputs. Hence, the distribution used forsgpgrid PCM may not be the
optimal distribution to represent the solutions of sucheys, which causes the slow
convergence of sparse-grid PCM for such stochastic prablem

To improve the slow convergence, optimal gPC bases arengutdiy the K-L
expansion of the covariance matrix of the stochastic ousplutions computed by
the adaptive ANOVA-based sparse-grid PCM. In the online matation, a Galerkin-
projection based gPC method with the optimal bases dewvelopae offline compu-
tational part is employed, which greatly improves the cogeace rate. The obtained
results in numerical examples considered indicate folhgwthree advantages of the
proposed adaptive ANOVA-based DDSM method: (1) by intéggatvith adaptive
ANOVA decomposition, it can effectively solve stochastiolplems within desire ac-
curacy even for problems with high-dimensional and largéawn&e stochastic inputs;
(2) the same optimal bases can be used for various detetimiftiscing terms on the
right-hand-side function of the elliptic PDE with randonefficients; (3) comparing to
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the classic gPC method, the number of gPC modes to achievdisgeaccuracy used
in the adaptive ANOVA-based DDSM method is much smaller,chigreatly reduces
the computational cost.
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