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Abstract

Generalized polynomial chaos (gPC) methods have been successfullyapplied
to various stochastic problems in many physical and engineering fields. However,
realistic representation of stochastic inputs associated with various sources of un-
certainty often leads to high dimensional representations that are computationally
prohibitive for classic gPC methods. Additionally in the classic gPC methods,
the gPC bases are determined based on the probabilistic distribution of stochastic
inputs. However, the stochastic outputs may not share the same probabilistic distri-
bution as the stochastic inputs. Hence, the gPC bases may not be the optimalbases
for such systems, which causes the slow convergence of gPC methodsfor such
stochastic problems. Here we present a general framework that integrates the adap-
tive ANOVA decomposition technique and the data-driven stochastic method to
alleviate both of the two limitations. To handle high-dimensional stochastic prob-
lems, we investigate the use of adaptive ANOVA decomposition in the stochastic
space as an effective dimension-reduction technique for high-dimensional stochas-
tic problems. Three different ANOVA adaptive criteria are discussed.

To improve the slow convergence of gPC methods, we use the data-driven
stochastic method (DDSM) which was developed by Cheng-Hou-Yan in [5]. This
method has an offline computation and an online computation. In the offline com-
putation, optimal gPC bases are obtained by Karhunen-Loéve (K-L) expansion
of the covariance matrix of stochastic outputs obtained by ANOVA-based sparse-
grid PCM. In the online computation, a Galerkin-projection based gPC method
with the optimal bases developed in the offline computation is employed, which
greatly speeds up the convergence. Numerical examples are presented for one-
, two-dimensional elliptic PDE with random coefficients, and a two-dimensional
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Helmhotz equation in random media (Horn problem) to show the accuracy and
efficiency of the developed adaptive ANOVA-based DDSM method.

Keywords: Analysis of variance, Karhunen-Loéve expansion, uncertainty quan-
tification, high dimensions, sparse grids.

1 Introduction

There has been growing interest and significant progress over the past decades on mod-
eling complex physical, and engineering systems with uncertainties. However, in the
simulation of real physical randomly heterogeneous systems, a realistic representation
of stochastic inputs associated with various sources of uncertainty often leads to high
dimensional representations that are computationally prohibitive for many numerical
methods, such as generalized polynomial chaos (gPC) methods [38] and probabilis-
tic collocation method (PCM) [37]. In this paper, we presenta general framework
that combines the ANOVA decomposition technique with the recently developed data-
driven stochastic method (DDSM) [5] to alleviate the curse of dimensionality and slow
convergence issues of gPC methods. For stochastic problemswith high stochastic di-
mensions, we employ the functional ANOVA (ANalysis-Of-VAriance) method [15, 2]
as a dimension-reduction technique. The ANOVA decomposition was introduced by
Fisher [8]. Later, Hoeffding in 1948 successfully apply ANOVA decomposition to
study U-statistics [16]. This method is motivated by the observation that for many real
physical systems, only a relatively small number of stochastic dimensions are impor-
tant and will significantly impact the outputs of the stochastic systems. ANOVA has
also been used for uncertainty quantification in [36] and wasemployed in gPC for solv-
ing high-dimensional stochastic PDE systems in [9, 24, 25, 4, 11, 39]. In [9] ANOVA
was integrated with a multi-element PCM. In [24], an adaptive version of ANOVA is
developed to automatically detect the important dimensions. In [39], adaptive ANOVA
methods based on three different adaptive criteria were proposed and compared.

The ANOVA decomposition results in a set of low-dimensionalsub-problems in
stochastic space. A sparse-grid PCM is used to solve these low-dimensional sub-
problems efficiently. The PCM was first introduced by Tatang and McRae [33]. Rrecently
Xiu and Hesthaven [37] have used a Lagrange polynomial interpolation to construct
high-order stochastic collocation methods. The properties of PCM were extensively
studied in the past10 years. In [26, 27, 1], the errors of integrating or interpolating
functions with Sobolev regularity were analyzed for Smolyak constructions based on
the one-dimensional nested Clenshaw-Curtis rules. In [27], the degree of exactness
of the Smolyak quadrature using the Clenshaw-Curtis and Gaussian one-dimensional
rules was investigated. In [37], the efficiency of the Clenshaw-Curtis-based sparse grid
stochastic collocation was demonstrated by comparing it with other stochastic methods
on an elliptic problem. In 2003, Gerstner and Griebel [12] introduced the dimension-
adaptive tensor product quadrature method. In [10], sparsegrid collocation schemes
were applied to solve stochastic natural convection problems. In [21, 22, 18, 13], a
multi-element PCM was employed to study the random roughness problem, stochas-
tic compressible flow and plasma flow problems. In [14, 23], anadaptive hierarchical
sparse grid collocation algorithm has been developed.
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In the classic gPC methods, the gPC bases are determined based on the probabilistic
distribution of stochastic inputs. DDSM is inspired by the fact that the stochastic out-
puts may not share the same probabilistic distribution as the stochastic inputs. Hence,
the distribution used for sparse-grid PCM may not be the optimal distribution to repre-
sent the solutions of such systems, which causes the slow convergence of sparse-grid
PCM for such stochastic problems. To overcome this difficulty, we use DDSM [5] to
obtain a set of problem-dependent optimal gPC bases to greatly speed up the conver-
gence. The number of gPC modes to achieve a specified accuracyused in the ANOVA-
based DDSM is much smaller than the classic gPC method, whichgreatly reduces the
computational cost. In this work, an ANOVA-based DDSM is developed, which can be
considered as a stochastic extension of the Proper Orthogonal Decomposition (POD)
methods [31, 35], the original DDSM of Cheng-Hou-Yan [5], and the Multiscale Finite
Element methods [17]. DDSM has an offline computation and an online computation.
In the offline computation, optimal gPC bases are obtained byKarhunen-Lóeve (K-L)
expansion of the covariance matrix of stochastic outputs obtained by ANOVA-based
sparse-grid PCM. In the online computation, a Galerkin-projection based gPC method
with optimal bases developed in the offline computation is employed, which accelerates
the convergence rate considerably.

The remainder of the paper is organized in the following way;section 2 describes
the standard ANOVA decomposition, section 3 presents the DDSM, Section 4 intro-
duces the ANOVA-DDSM. Section 5 shows the results obtained using ANOVA-DDSM
and section 6 summarizes the findings.

2 Sparse-Grid Based Probabilistic Collocation Method

The general procedure for the PCM approach is similar to MC simulations, with a
difference in selecting the sampling points and corresponding weights. The procedure
consists of three main steps:

1. GenerateNc collocation points in probability space of random parameters as
independent random inputs based on a quadrature formula;

2. Solve a deterministic problem at each collocation point;

3. Estimate the solution statistics using the corresponding quadrature rule,

〈u(x, t)〉 =
∫

Γ

u(x, t, ξ)ρ(ξ)dξ (1)

≈
Nc
∑

k=1

v(x, t, ξk)wk, (2)

σ(u)(x, t) =

√

∫

Γ

(u(x, t, ξ)− 〈u〉)2ρ(ξ)dξ (3)

≈

√

√

√

√

Nc
∑

k=1

v2(x, t, ξk)wk − 〈v〉2, (4)
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whereρ(ξ) is the probabilistic distribution function (PDF) of randomvariableξ,Nc is
the number of quadrature points,{ξk} is the set of quadrature points and{wk} is the
corresponding set of weights, which are the combination of quadrature weights in each
random dimension. In the second step of the PCM approach, as for MC, any existing
code can be used to solve deterministic flow-and-transport equations. Extensive re-
views on the construction of quadrature formulas may be found in [6] and [7]. Below,
we provide a brief review of two different methods for selecting collocation points.

In this work, we use the Smolyak formula [32] to construct thecollocation point
set, which is a linear combination of tensor product formulas, and the resulting point set
has a significantly smaller number of points than the full tensor product set. Recently,
researchers [37, 19, 20] have used Lagrange polynomial interpolation to construct high
order stochastic collocation methods based on sparse gridsusing the Smolyak formula
[32]. Such sparse grids do not depend as strongly on the dimensionality of the random
space and as such are more suitable for applications with high-dimensional random
inputs. Detailed description on how to build the collocation point set can be found in
[37, 19, 20].

3 Data-Driven Stochastic Method

Consider the stochastic PDE

L(x, ω)u(x, ω) = f(x) (5)

wherex ∈ D,ω ∈ Ω andL(x, ω) is a stochastic differential operator. The stochastic
ingredient resides in the differential operatorL(x, ω) while f(x) is purely determinis-
tic. The authors heuristically argue that the bases only depend onL(x, ω). Generally
speaking, the bases can be obtained by solving (5) for one particular f(x) in offline
part. Then this set of bases could be used to solve other problems with different com-
plicatedf(x).

Inspired by multiscale finite element method [17] and properorthogonal decom-
position (POD) method [31, 35], Cheng-Hou-Yan proposed an new algorithm, called
Data-Driven Stochastic Method [5]. The authors tried to build up gPC bases under
which the stochastic solutions have a sparse decompositionbased on Karnunen-Loève
(K-L) expansion. Foru(x, ω) ∈ L2(D × Ω), its K-L expansion reads as follows

u(x, ω) = E[u] +

∞
∑

i=1

√

λiξi(ω)φi(x), (6)

where{λi} and{φi(x)} are the eigenpairs of the covariance kernelC(x,y), i.e.
∫

D

C(x,y)φ(y)dy = λφ(x), (7)

and{ξi(ω)} are random variables defined as

ξi(ω) =
1√
λi

∫

D

(u(x, ω)− E[u])φi(x)dx. (8)
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Moreover, these mutually uncorrelated random variables{ξi(ω)} satisfy

E[ξi] = 0, E[ξiξj ] = δij (9)

In numerical practice, only a finite series expansion is adopted, depending on the decay
rate of the eigenvalues,

u(x, ω) = E[u] +
N
∑

i=1

√

λiξi(ω)φi(x). (10)

For a given covariance function, the decay rate of the eigenvalues depends inversely
on the correlation length. Long correlation length impliesthat the random process is
strongly correlated and results in a fast decay of the eigenvalues. A weakly correlated
process has short correlation length and results in a slow decay of the eigenvalues.
Under some assumptions [30], the eigenvalues in K-L expansion decay exponentially
(or sub-exponentially) fast in dimensiond = 1 (or d > 1).

This algorithm consists of offline part and online part. In offline part, a set of
gPC bases{Ai(ω)} are obtained based on K-L expansion. In online part, the set of
gPC bases are used to solve a set of coupled deterministic PDEs of coefficients in the
stochastic expansion. It should be noticed that in this framework the set of gPC bases
are problem-dependent.

3.1 Offline computation

The purpose of offline computation is to obtain a complete setof gPC bases based on K-
L expansion of the stochastic solutions. Instead of using Monte Carlo (MC) simulation,
which only has a convergence rate of1/

√
N , we combine sparse grid method and K-L

expansion in order to expedite the computation in high dimensional problem. In this
part, we obtain not only the gPC bases numerically, but also avariety of statistical
information on this set of bases{Ai(ω)}, such as expectation ofa(x, ω)Ai(ω)Aj(ω)
and moments

E[AiAjAk] =
1

N

N
∑

n=1

Ai(ωn)Aj(ωn)Ak(ωn).

In order to construct the covariance functionC(x,y), we need to sample stochastic
solutionu(x, ω). First, we expandu(x, ω) using polynomial chaos expansion:

u(x, ω) =
∑

ûj(x)ψj(ω). (11)

Then by orthogonality of{ψj(ω)}, we have

ûj(x) =

∫

Ω

u(x, ω)ψj(ω)dω. (12)

The integral (12) can be approximated by sparse grid method,

ûj(x) =
∑

i

wiũi(x, ωi)ψj(ωi), (13)
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where{ωi} are Smolyak sparse grid points,{ũi(x, ωi)} are corresponding solutions,
and{wi} are integration weights associated with{ωi}. Once{ûj(x)} are obtained,
we can sampleN solutionsu(x, ω) using K-L expansion (11). Then the mean and
covariance are computed

ū(x) =
1

N

N
∑

i=1

u(x, ωi), (14)

C(x,y) =
1

N

N
∑

i=1

u(x, ωi)u(y, ωi)− ū(x)ū(y). (15)

Afterward, the firstM eigen-pairs are solved

λiφi(x) =

∫

D

C(x,y)φi(y)dy, i = 1, · · · ,M. (16)

Finally, the gPC bases{Ai(ω)} are obtained by

Ai(ω) =
1√
λi

∫

D

(u(x, ω)− ū(x))φi(x)dx. (17)

Remark 1 It is easy to verify that each basisAi(ω) has mean zero and{Ai(ω)}Mi=0

are mutually orthogonal.

3.2 Online computation

In this part, we only solve deterministic equations since all the statistical information
has been obtained in the offline part. This means that the online computation could be
fast. The basesAi(ω) spans a finite-dimensional subspace inL2(Ω). Therefore, we
can project the stochastic solutionu(x, ω) onto this subspace, i.e.

u(x, ω) ≈
M
∑

i=0

ui(x)Ai(ω). (18)

For simplicity of notation,A0 = 1 andu0(x) = E[u(x, ω)].
In order to obtain the coupled deterministic equations, Galerkin projection is uti-

lized. Multiplying (5) byAj(ω) and taking expectation on both sides give us

M
∑

i=0

E [L(x, ω)Ai(ω)Aj(ω)]ui(x) = E [f(x)Aj(ω)] , j = 0, · · · ,M. (19)

4 ANOVA Expansion

In statistics, ANOVA method can be used to describe the interactions between a large
number of variables while only few samples are available. The same idea can be
adopted in the interpolation and integration of high dimensional problems as well as
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stochastic systems. For most well-defined physical system,only relatively low order
correlations of the input variables are expected to be important for the output of the sys-
tem. The ANOVA expansion utilizes this property and at each new level of ANOVA
expansion, higher order correlation effects of the input variables are accounted for.
Consider a Lebesgue integrable multivariate stochastic functionf(Y) : Rd → R andd
is the dimension of stochastic space we are interested in. ANOVA expansion represents
f(Y) as finite hierarchical correlated functions of input variables in the form of

f(Y) = f0 +

d
∑

s=1

∑

j1<···<js

fj1,··· ,js(Yj1 , · · · , Yjs), (20)

or equivalently

f(Y) = f0 +
∑

1≤j1≤d

fj1(Yj1) +
∑

1≤j1<j2≤d

fj1,j2(Yj1 , Yj2) + · · ·

+ f1,2,··· ,d(Y1, Y2, · · · , Yd). (21)

We callfjk(Yjk) the first order term,fjk,jl(Yjk , Yjl) the second order term, etc. .
The ANOVA components have the following properties:

1. The constant term is the mean of function, that is

f0 =

∫

Γd

f(Y)dµ(Y), (22)

which means that all higher order components have mean zero
∫

Γd

fj1,··· ,jsdµ(Y) = 0 for 1 ≤ s ≤ d. (23)

2. The other important property of ANOVA expansion is the orthogonality among
its terms

∫

Γd

fj1,··· ,jsfk1,··· ,kl
dµ(Y) = 0, (24)

if (j1, · · · , js) 6= (k1, · · · , kl). This is the direct consequence of (23).

3. The variance off is the sum of variance of all component functions

σ2(f) =

d
∑

s=1

∑

|s|=s

σ2(fs) (25)

It is worth pointing out that equation (25) holds only when the measure used in the
calculation of variance, i.e. the integral with Lebesgue measure, is the same as that in
ANOVA decomposition.
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Remark 2 It could be extremely expensive to compute ANOVA decomposition for high
dimensionalf(Y). Therefore Dirac measure is adopted instead of Lebesgue measure,
i.e.dµ(Y) = δ(Y− c)dY, c ∈ Γd. The special pointc is termed anchor point. How-
ever, it is difficult to calculate anchor pointc such thatf0 = f(c) = f(Y). In this
paper, we take anchor pointc to be the mean of random variableY as an approxima-
tion. In this case, the property(22)and(23)do not hold any more. Additional terms of
ANOVA decomposition are needed to improve the mean.

The measuredµ(Y) determines the particular form of each component function
following the notation in [29, 28]. We introduce a projection operatorPs : Γ

d → Γ|s|

Psf(Ys) :=

∫

Γd−|s|

f(Y)dµI\s(Y) (26)

wheredµI\s :=
∏

i∈I,i/∈s
dµi(Yi).

Therefore, each termfs can be recursively defined by

fs(Ys) = Psf(Ys)−
∑

t⊂s

ft(Yt). (27)

4.1 Adaptive ANOVA

When the nominal dimension of the stochastic problem increases, the computational
complexity of the standard ANOVA becomes prohibitive to evaluate all the terms. For
example, for nominal dimensionN = 100, the number of terms for 2nd order ANOVA

decomposition needed to calculate is1 +

(

100
1

)

+

(

100
2

)

= 5051. Nevertheless,

in many stochastic problems, most of the interactions amongdifferent dimensions are
usually weak and have little contribution to the stochasticoutputs. This means that
the active dimension of those stochastic problems is small.Therefore, an adaptive
approach can be employ to solve those problems efficiently without losing much accu-
racy.

There are many “adaptive” approaches and the one we employ inthis paper is
obtained by replacing the nominal dimension by an active dimension, i.e., we modify
(21) to be

f(Y) ≈ f0 +
∑

j1≤D1

fj1(Yj1) +
∑

(j1,j2)∈F2

fj1,j2(Yj1 , Yj2) + · · ·

+
∑

(j1,j2,,jν)∈Fν

fj1,j2,··· ,jν (Yj1 , Yj2 , · · ·Yjν ). (28)

In practice,D1 is usually set to beN andν = 2. That is all first order terms are
calculated so that some criterion could determine the setF2 according to the property
of the specific problem. However, the criteria in [25, 39] does not specify how many
the active dimensions there are a priori. Hence there may be redundant dimensions
which are actually not active dimensions. Motivated by the DDSM method, the fast
decay of eigenvalues in (7) can serve as an appropriate indicator of the convergence of
K-L expansion in terms of optimal gPC bases.
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First, we describe two popular adaptive criterion listed in[25, 39]. Then a new
criterion is proposed in criterion 3.

Criteria 1: Let T1 =
∑N

j=1 σ
2(fj), which is the sum of the variance of all the

first-order terms. Assume that the first order terms are sorted such thatσ2(fj) is mono-
tonically decreasing. The active dimensionD2 should satisfy:

D2
∑

j=1

σ2(fj) ≥ pT1. (29)

wherep is a proportionality constant with0 < p < 1 and very close to 1. This criterion
is similar to the criterion used in [3] whereσ2(f) instead ofT1 is used on the right
hand side of (29) andp is set to be0.99. The setF can be found by computing

ηj1,j2 =
σ2(fj1,j2)

∑D1

j=1 σ
2(fj)

, (30)

and boundingηj1,j2 with a predefined error thresholdθ2.
Criteria 2: Ma and Zabaras use the mean of component functionfj as the indicator

to decide the active ANOVA terms [25]. Let

ηj =
E(fj)

f0
, (31)

where the predefined error thresholdθ1 is used to boundηj , i.e.,ηJ ≤ θ1 for someJ .
If ηj are monotonically decreasing with respect toj and we setD2 ≥ J , then (31) can
equivalently be written as

D2
∑

j=1

E(fj) ≥ p
N
∑

j=1

E(fj), (32)

wherep = 1 − θ1. Then, for a further selection of the second-order terms, Maand
Zabaras also use the mean of the component functions:

ηj1,j2 =
E(fj1,j2)

∑D1

j=0E(fj)
, (33)

whereηj1,j2 is bounded by a predefined error thresholdθ2.
Criteria 3: Combining all above, we propose a new criterion, which trulyselects

active dimensions. First, eigenvaluesλi of covariance kernelC(x,y) in equation (7)
are obtained and sorted, i.e.λ1 > λ2 > · · · . Then we pick the number of active
dimensionsD2 such that

λi/λ1 > Λ, i = 1, · · · , D2, (34)

whereΛ is a predefined threshold. The dimensions with largestD2 either variance or
mean are selected as active dimensions. Further selection of the second dimensions
F2 could be accomplished by (30) or (33) accordingly. Our numerical examples of 1d
and 2d Elliptic PDE with random coefficients show that this criterion is much more
efficient by the fact thatD2 is much less than that in Criteria 1 or 2.
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Remark 3 When we employ the above criteria to applications we replacethe mean
and deviation of component functionfj with their L2 norm values on the physical
domain.

5 (Adaptive) ANOVA-based Data-Driven Stochastic Method
(ANOVA-DDSM)

In this paper, we solve high dimensional stochastic problems by taking advantage of
(adaptive) ANOVA method and data-driven stochastic method. For large dimension
d ≫ 1, the rate of convergence in many stochastic methods, such asMonte Carlo
method, Wiener Chaos Expansion method (WCE), etc. , deteriorates drastically. This
poses a numerical challenge because it requires a huge number of simulations of the
underlying deterministic system. This is the well-known curse of dimensionality. The
data driven stochastic method also has this problem since the number of gPC bases
M increases fast if the dimension of the stochastic problem islarge. The following
algorithm is proposed to deal with high dimensional stochastic problems efficiently.

Algorithm 1 ((Adaptive) ANOVA-DDSM algorithm)

1. Expand stochastic solutionu(x,Y) in ANOVA decomposition

u(x,Y) = u0(x) +

d
∑

j1=1

uj1(x, Yj1) +
∑

1≤j1<j2≤d

uj1,j2(x, Yj1 , Yj2) + · · · ,

(35)

or adaptive ANOVA decomposition

u(x,Y) ≈ u0(x) +

D1
∑

j1=1

uj1(x, Yj1) +
∑

(j1,j2)∈F2

uj1,j2(x, Yj1 , Yj2) + · · · ,

(36)

where the setF2 is selected according to Criterion 3.

2. Solve for the mean termu0(x) which satisfies a deterministic equation by re-
placing random variablesY with anchor pointc in the stochastic PDE,

L(x, c)u0(x) = f(x). (37)

3. For each high order termuj1,j2,··· ,js(Yj1 , Yj2 , · · · , Yjs), DDSM is utilized to
calculate the solution efficiently with different deterministic forcing termf(x).
For differentf(x), the same gPC bases, which have been constructed in the
offline part for each term in ANOVA decomposition, can be usedrepeatedly.

Remark 4 In practice, only second order or third order terms are needed in (adaptive)
ANOVA expansion for good accuracy of mean and variance.

Remark 5 In calculating each term in ANOVA expansion, several gPC bases could be
enough for accuracy requirement. This essentially expedites our computation.
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6 Numerical examples

As explained in previous sections, we can reduce a high dimensional stochastic prob-
lem into a system of low dimensional problems using (adaptive) ANOVA decomposi-
tion. For each low dimensional problem, it is significantly efficient to solve each low
dimensional problem in terms of CPU time and memory cost.

6.1 1D Stochastic Elliptic PDE in 4d Random Space

We test the ANOVA-DDSM algorithm on a 1D stochastic EllipticPDE with 4 sources
of randomness as follows

− ∂

∂x

(

a(x, ω)
∂

∂x
u(x, ω)

)

= f(x), (38)

u(x, ω) = 0, x = 0 andx = 1.

The stochastic coefficienta(x, ω in Eq. (38) is chosen to be

a(x, ω) = 1 +

4
∑

i=1

Ciξi(ω)(sin(Diπx) + 1), (39)

where

C = [0.1, 0.12, 0.2, 0.15], D = [1.2, 2.3, 3.1, 4.3], (40)

and {ξi} are uniform i.i.d. random variables in[0, 1]. We run107 realizations of
Monte Carlo as the exact solutionuMC(x, ω). The DDSM gPC bases{Ai(ω)}Mi=1 are
constructed usingf(x, y) = 1 and then are used to solve the stochastic Elliptic PDE
with f(x, y) = sin(2πx) + 5 sin(4πy). The relativeL2 error of mean is defined as

ǫm =
||ū(x)− ūMC(x)||L2

||ūMC(x)||L2

, (41)

and relativeL2 error of variance is

ǫv =
||Var (u)−Var (uMC)||L2

||Var (uMC)||L2

. (42)

The relative error of mean is shown in Fig. 1. The constant term does not repre-
sent the mean of the stochastic solution well since the anchor point c is not optimal.
Therefore, additional terms are necessitated to improve the accuracy of ANOVA ap-
proach. Note that the stochastic coefficienta(x, ω) is an additive function of random
variablesξi(ω). Then the first order expansion is enough to represent the solution and
its mean [25], which is shown in Fig. 1. This plot indicates that increasing the ex-
pansion order does not improve accuracy dramatically. Moreover, it only has limited
effect on the accuracy of mean by including more gPC bases (ormodes) in expansion
(18). First order ANOVA expansion and 4 or 5 stochastic modesare good enough to
approximate the mean of solution. However, higher order ANOVA decomposition and
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Figure 1: Relative error of mean of one dimensional ellipticPDE with 4 random vari-
ables. The exact solution is computed with107 realizations.

more stochastic modes are required to represent the variance well. As shown in Fig.
2, second order of ANOVA decomposition and 6 bases are neededto approximate the
variance of stochastic solution. Contrast to the mean, increasing the order of ANOVA
decomposition and/or number of stochastic bases do improvethe accuracy of variance.
In practice, unless otherwise stated, we take second order ANOVA expansion and 6
gPC bases in our calculations.

6.2 1D Stochastic Elliptic PDE in High Dimensional Probabilistic
Space

In this subsection, we consider 1D stochastic Elliptic PDE (38) in 100 dimensional
probabilistic space. The stochastic coefficienta(x, ω) now reads as

a(x, ω) =

100
∑

i=1

Ciξi(ω)(sin(Diπx) + 1), (43)

where{ξi} are uniform random variables in[0, 1] andCi ∈ (0, 0.001) andDi ∈ (0, 10)
are randomly generated. We run106 realizations of Monte Carlo as the reference solu-
tionuMC(x, ω). The DDSM gPC bases{Ai(ω)}Mi=1 are constructed usingf(x, y) = 1
and then are used to solve the stochastic Elliptic PDE withf(x, y) = sin(2πx) +
5 sin(4πy).
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Figure 2: Relative error of variance of one dimensional elliptic PDE with 4 random
variables. The exact solution is computed with107 realizations.

Table 1: Comparison of adaptive ANOVA-DDSM using differentCriteria
relative error of mean relative error ofσ # of active terms

Criterion 1
(p = 0.9,ηj1,j2=1E-5) 2.04E-2 2.14E-2 151

Criterion 3
Λ = 1E-3 Λ = 1E-5 Λ =1E-3 Λ =1E-5 Λ =1E-3 Λ =1E-5
3.60E-2 2.23E-2 2.21E-2 2.15E-2 111 146

The decay ofλi/λ1 is shown in Figure 3. Only5 dimensions are active ifΛ =1E-
3 and10 dimensions ifΛ =1E-5. However, if we pickp = 0.9, the numbers of
active dimensions are54 and87 for Criterion 1 and 2 respectively. Thus, the numbers
of second order terms needed to be computed are1431 and3741 respectively. The
computations of all these terms are necessary, although thenumber of active terms
in second order could be further shrinked by imposing some thresholdηj1,j2 for the
relative variance or mean in Criterion 1 or 2. In contrast, inCriterion 3, the active
dimensions have been identified beforehand for some predefined thresholdΛ. Thus the
number of second order terms needed to compute is significantless.

The comparison using Criteria 1 and 3 is listed in Table 1. From this table, it is
clear that, using different criteria, the numbers of final active terms are almost the same
and so are the relative errors of mean and standard deviationσ.

The profile of mean computed by second order adaptive ANOVA-DDSM using
Criterion 3 is compared with MC method in Fig. 4. It can be seenthat the profile
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Figure 3: The decay of sorted relative eigenvalues of covariance kernel for a 1D Elliptic
PDE with random coefficient in 100 probabilistic dimension.

matches the reference solution very well. However, the standard deviation of ANOVA-
DDSM is a little lower than MC as shown in Fig. 5. Higher order adaptive ANOVA
decomposition can definitely improve the accuracy of standard deviation. But it brings
considerably more amount of computations.

6.3 Horn Problem

In this subsection, we extend our method to 2-d Helmholtz equation in random media,
the planar acoustics horn problem described in detail in [34]. The full domain is de-
picted in Fig. 6, which comprises both the horn proper and a large circular segment.
The governing equations for the (complex) pressure are then

∇2p(x, y, ω) + k2(1 + n2(x, y, ω))p(x, y, ω) = 0, (44)

with boundary conditions

∂p

∂~n
− ikp = 0 onΓ1,

∂p

∂~n
= 0 onΓ2,

p(x, y, ω) = f(x, y) onΓ3,
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Figure 4: Comparison of mean of one dimensional elliptic PDEwith 100 random
variables by Adaptive ANOVA-DDSM using Criterion 3 and Monte Carlo simulation.
Λ =1E-5 and 10 active dimensions.
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Figure 5: Comparison of standard deviation of one dimensional elliptic PDE with 100
random variables by Adaptive ANOVA-DDSM using Criterion 3 and Monte Carlo sim-
ulation.Λ =1E-5 and 10 active dimensions.
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where~n is the unit outer-pointing normal of the boundary,k is the wave number and
n2(x, y, ω) is the random reflectivity of the media. In this example, the random reflec-
tivity of the media is chosen to be

n2(x, y, ω) =
4

∑

i=1

ξi(ω)ψi(x, y),

where{ξi(ω)} are i.i.d. uniformly distributed random variable in[0, 1] and functions
{ψi(x, y)} are given by

ψ1(x, y) = sin2(2πx+ θ1) sin
2(2πy + θ2)

ψ2(x, y) = sin2(4πx+ θ3) sin
2(4πy + θ4)

ψ3(x, y) = sin2(6πx+ θ5) sin
2(4πy + θ6)

ψ4(x, y) = sin2(6πx+ θ7) sin
2(6πy + θ8)

with phase{θi} being randomly generated.
The DDSM gPC bases{Ai(ω)}Mi=1 are constructed usingf(x, y) = 1 and then

are used to solve the stochastic horn problem withf(x, y) = sin(2πx) sin(2πy) + 2.
In this example,k is taken to be0.7. Only 6 gPC bases and second order ANOVA
decomposition are used. In Fig. 7, the comparison of real part of mean contours of
pressure by ANOVA-DDSM and MC methods is shown. As expected,the mean could
be approximated accurately even using only second order ANOVA decomposition in
this example. However, the difference of standard deviation is noticeable, especially
outside the horn proper and the region right of center. Again, this is mainly due to the
lower order of ANOVA decomposition. Accuracy of deviation could be compensated
by employing higher order ANOVA decomposition and/or more gPC bases. Adaptive
ANOVA method could be utilized if computational cost is highly concerned and high
accuracy is required.

6.4 2D Stochastic Elliptic PDE in High Dimensional Probabilistic
Space

Finally, We consider a 2D stochastic Elliptic PDE with a random coefficient in 50
dimensional probabilistic space

−∇ · (a(x, y, ω)∇u(x, y, ω)) = f(x, y), (45)

u(x, y, ω)|∂D = 0.

The stochastic coefficienta(x, y, ω) is defined as

a(x, y, ω) =

50
∑

i=1

Diξi (sin(Eiπx+ Fiπy) + 1) , (46)

where{ξi} are uniform random variables in[0, 1] and the constant parameters are ran-
domly generatedDi ∈ [0, 0.01], Ei, Fi ∈ [5, 10]. Adaptive ANOVA-DDSM methods
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Figure 7: Comparison of real part of mean contour in horn problem. Left: ANOVA-
DDSM method. Right: Monte-Carlo simulation.
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Table 2: Comparison of adaptive ANOVA-DDSM using differentCriteria
relative error of mean relative error ofσ # of active terms

Criterion 1
(p = 0.99,ηj1,j2=1E-5) 3.60E-3 5.70E-2 201

Criterion 3
Λ = 1E-3 Λ = 1E-4 Λ =1E-3 Λ =1E-4 Λ =1E-3 Λ =1E-4
4.60E-3 4.40E-3 6.72E-2 6.18E-2 61 96

using different criteria are employed to solve this problem. The DDSM gPC bases
{Ai(ω)}Mi=1 are constructed usingf(x, y) = 1 and then are used to solve the stochas-
tic Elliptic PDE withf(x, y) = sin(2πx) sin(2πy) + 2. Monte-Carlo results with106

realizations are served as reference solutions. The decay plot of eigen-values of covari-
ance kernel in Fig. 11 indicates that there are 5 active dimensions ifλi/λ1 >1E-3 and
10 active terms ifλi/λ1 >1E-4 in Criterion 3. For Criterion 1, the parameterp is set
to be0.99, which results in 25 active dimensions. Then total 300 second order terms
are computed. It requires201 terms in total forη(j1,j2) =1E-5 to be calculated towards
approximating stochastic outputs. In contrast, to achievethe same order of accuracy
for both mean and standard deviation, there are only61 and96 terms needed in total
for Λ =1E-3 andΛ =1E-4, respectively. The comparison results are summarizedin
Table 2.

In Fig. 12, the contour of mean computed by adaptive ANOVA-DDSM using Cri-
terion 3 with 10 active dimensions is plotted and compared with that by MC. In terms
of mean, adaptive ANOVA-DDSM performs well. To further demonstrate the conver-
gence of mean, we plot the error contour of mean in Fig. 13. This shows clearly that
the magnitude of error is of order10−2. In addition, we plot the mean contour lines
of stochastic solutions given by adaptive ANOVA-DDSM and MCin Fig. 14. Again,
the contours match very well. All the above have shown that ANOVA-DDSM captures
mean accurately.

In Fig. 15, the contour of standard deviation computed by adaptive ANOVA-
DDSM using Criterion 3 with 10 active dimensions is plotted and compared with that
by MC. Adaptive ANOVA-DDSM can capture the correct pattern of the standard devi-
ation. However, the magnitude is slightly lower. This is indicated in Fig. 16, where the
error of standard deviation is plotted. In order to further illustrate this, the contour lines
of standard deviation are shown in Fig. 17. The closer to the center of the domain, the
larger the solution is. In this plot, the contour lines of adaptive ANOVA-DDSM are
closer to the center than those of MC, which means that the deviation calculated by
adaptive ANOVA-DDSM is smaller. This is mainly due to the following two facts.
First, only 10 active dimensions in adaptive ANOVA decomposition are considered
and this is just an approximation of the standard ANOVA decomposition. Secondly
and more importantly, only second order decomposition is employed. Using higher or-
der adaptive ANOVA decomposition could improve the accuracy of standard deviation,
but it would take much more computational cost.
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Figure 11: The decay of sorted relative eigenvalues of covariance kernel for a 2D
Elliptic PDE with random coefficient in 50 probabilistic dimension.
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Figure 12: Comparison of mean contour of 2D stochastic Elliptic PDE. Left: adaptive
ANOVA-DDSM method using Criterion 3. Right:Monte-Carlo simulation. Λ =1E-4
and 10 active dimensions.
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Figure 13: Mean error contour of 2D stochastic Elliptic PDE.
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Figure 14: Contour comparison of mean contour of 2D stochastic Elliptic PDE.
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Figure 16: Standard deviation error contour of 2D stochastic Elliptic PDE.
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Figure 17: Contour comparison of standard deviation contour of 2D stochastic Elliptic
PDE.
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7 Conclusion and Discussion

In this paper, a novel adaptive ANOVA-based data-driven method is developed for
solving high-dimensional stochastic elliptic equation arising from various applications,
such as the randomly heterogeneous porous media flow problem. The developed method
has an offline computation and an online computation. In the offline computation,
adaptive ANOVA decomposition technique is applied to adaptively decompose the
original high dimensional problem into a set of low-dimensional sub-problems. By
modeling the behavior of stochastic systems with only the first few lower-order terms
of the high-dimensional input, adaptive ANOVA is able to efficiently represent the
output response to the high-dimensional inputs with specified good accuracy. This
results in a set of low-dimensional sub-problems in stochastic space, which are effi-
ciently solved by sparse-grid PCM. Numerical examples haveshown that solving the
set of low-dimensional sub-problems is more efficient than solving the original prob-
lem. Three different ANOVA adaptive criterion are discussed. Numerical tests indicate
that the third adaptive criteria gives the best approximation with minimal computational
cost.

Numerical examples involving both one-, two-dimensional elliptic PDE with ran-
dom coefficients, and a two-dimensional Helmhotz equation in random media (Horn
problem) have been conducted to verify the accuracy and efficiency of the developed
adaptive ANOVA-based DDSM method. In the offline computation, for stochastic
problems with fixed number of stochastic dimension, the number of component func-
tions needed in adaptive ANOVA decomposition depends on theimportant dimensions
with respect to the stochastic outputs and the variance of the stochastic inputs. For
real physical high-dimensional stochastic problems with up to 500 − 600 stochastic
dimensions [9, 25], adaptive ANOVA decomposition integrated with sparse-grid PCM
can achieve much better convergence rate than both the MonteCarlo and sparse-grid
PCM. However, it is worthwhile to note that adaptive ANOVA decomposition may not
be recommended to approximate mathematical functions where all dimensions are im-
portant. Additionally, sparse-grid PCM is determined based on the probabilistic distri-
bution of stochastic inputs. However, due to the nonlinearity of the complex stochastic
systems, the numerical solutions may not share the same probabilistic distribution as
the stochastic inputs. Hence, the distribution used for sparse-grid PCM may not be the
optimal distribution to represent the solutions of such systems, which causes the slow
convergence of sparse-grid PCM for such stochastic problems.

To improve the slow convergence, optimal gPC bases are obtained by the K-L
expansion of the covariance matrix of the stochastic outputsolutions computed by
the adaptive ANOVA-based sparse-grid PCM. In the online computation, a Galerkin-
projection based gPC method with the optimal bases developed in the offline compu-
tational part is employed, which greatly improves the convergence rate. The obtained
results in numerical examples considered indicate following three advantages of the
proposed adaptive ANOVA-based DDSM method: (1) by integrating with adaptive
ANOVA decomposition, it can effectively solve stochastic problems within desire ac-
curacy even for problems with high-dimensional and large variance stochastic inputs;
(2) the same optimal bases can be used for various deterministic forcing terms on the
right-hand-side function of the elliptic PDE with random coefficients; (3) comparing to
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the classic gPC method, the number of gPC modes to achieve specified accuracy used
in the adaptive ANOVA-based DDSM method is much smaller, which greatly reduces
the computational cost.
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