
Computational Materials Science 51 (2012) 455–481
Contents lists available at SciVerse ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
Investigating variability of fatigue indicator parameters of two-phase
nickel-based superalloy microstructures

Bin Wen, Nicholas Zabaras ⇑
Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853-3801, USA

a r t i c l e i n f o
Article history:
Received 19 May 2011
Received in revised form 23 July 2011
Accepted 28 July 2011
Available online 9 September 2011

Keywords:
Fatigue property
Two-phase superalloys
Polycrystalline microstructure
Model reduction
Principal component analysis
Polynomial chaos expansion
Stochastic simulation
Adaptive sparse grid collocation
0927-0256/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.commatsci.2011.07.055

⇑ Corresponding author. Fax: +1 607 255 1222.
E-mail address: zabaras@cornell.edu (N. Zabaras).
URL: http://mpdc.mae.cornell.edu/ (N. Zabaras).
a b s t r a c t

Variability of fatigue properties of Nickel-based superalloys induced by microstructure feature uncertain-
ties is investigated. The microstructure at one material point is described by its grain size and orientation
features, as well as the volume fraction of the c0 phase. Principal component analysis (PCA) is introduced
to reduce the dimensionality of the microstructure feature space. PCA and kernel PCA (KPCA) techniques
are presented and compared. Reduced representations of input features are mapped to uniform or stan-
dard Gaussian distributions through polynomial chaos expansion (PCE) so that the sampling of new
microstructure realizations becomes feasible. A crystal plasticity constitutive model is adopted to evalu-
ate fatigue properties of two-phase superalloy microstructures under cyclic loading. The fatigue proper-
ties are measured by strain-based fatigue indicator parameters (FIP). Adaptive sparse grid collocation
(ASGC) and Monte Carlo (MC) methods are used to establish the relation between microstructure feature
uncertainties and the variability of macroscopic properties. Convergence with increasing dimensionality
of the reduced surrogate stochastic space is studied. Distributions of FIPs and the convex hulls describing
the envelope of these parameters in the presence of microstructure uncertainties are shown.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Quantification of mechanical property variability of microstruc-
tures has been studied extensively as it is essential for the predic-
tion of extreme properties and microstructure-sensitive design of
materials. In the past few years, a series of investigations were
undertaken to study the variation in stress–strain response and
elastic properties of single phase metals caused by microstructure
uncertainties using a variety of computational methodologies. In
[1], the principle of maximum entropy (MaxEnt) was used to de-
scribe the grain size distribution of polycrystals given a set of grain
distribution moments as constraints. Microstructure realizations
were then generated and interrogated using crystal plasticity finite
element method (CPFEM) [2]. Orientations were randomly as-
signed to all constituent grains. The Monte Carlo (MC) method
was adopted to compute the error-bars of effective stress–strain
response of FCC aluminum. In [3], the orientation distribution
function (ODF) was adopted to describe the polycrystalline micro-
structure. A number of ODF samples were given as the input data.
The Karhunen-Loève expansion (KLE) [4,5] was utilized to reduce
the input complexity and facilitate the high-dimensional stochastic
simulation. An adaptive version of the sparse grid collocation
ll rights reserved.
strategy [6,7] was used to obtain the variability of the stress–strain
curve and the convex hull of elastic modulus of FCC aluminum
after deformation. Mechanical response variability and thermal
properties due to both orientation and grain size uncertainties
were analyzed in [8,9]. A non-linear model reduction technique
based on manifold learning [10] has been introduced to find the
surrogate space of the grain size feature while grain orientations
were represented using KLE. Probabilistic stress response after
deformation was constructed for FCC Nickel [8].

Most of the previous research focuses on elasto-plastic response
and elastic properties of single phase polycrystals. Fatigue resis-
tance is also of great importance in materials design. In addition,
alloys composed of more than one constituent materials are widely
used in components that require demanding properties in a high-
temperature environment (e.g. aircraft-engines). Nickel-based
superalloys are extensively used in turbine disks and blades [11].
Numerical tools have been developed for the understanding of
the properties of Ni-based superalloys ranging from microscopic
dislocation dynamics [12–17] to mesoscopic crystal plasticity
models [18–21].

McDowell and colleagues conducted a series of studies on the
properties (fatigue resistance and crack formation) of various Ni-
based superalloys under cyclic loading [22–25]. Crystal plasticity
constitutive models for homogenized (c + c0) grain and explicit
two-phase (c and c0) structures were developed and implemented
in the finite element (FE) framework to investigate the
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Fig. 1. Explicit structure of a (c + c0) grain and its equivalent homogenized model.
The gray background on the left grain represents c matrix, while secondary and
tertiary c0 precipitates are depicted as dark particles.
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macroscopic stress–strain response and strain-based fatigue prop-
erties of superalloy microstructures. Effects of microstructure
uncertainties on intrinsic fatigue resistance were emphasized
[23,25,26]. An artificial neural network [27] was trained and ap-
plied to predict fatigue properties of microstructure given its fea-
tures within the training bound [28].

In this work, our interest is in the variability of strain based fa-
tigue indicator parameters (FIPs) [24] of Ni-based superalloy
microstructures satisfying certain constraints. A set of microstruc-
tures described by their grain sizes, orientations and volume frac-
tion of the c0 phase are provided as the initial database. Principal
component analysis (PCA) model reduction techniques are applied
to find low-dimensional representations of microstructure features
and construct a surrogate space so that sampling of new micro-
structure features becomes computationally efficient. Both linear
and non-linear (kernel) versions of PCA [29–31] are examined
and compared. Polynomial chaos expansion (PCE) [5,32–34] is
introduced to map the surrogate space to the support space of
Gaussian or uniform random variables from which new samples
can easily be drawn. The two-phase Ni-based superalloy constitu-
tive model for IN 100 developed in [25] is adopted to predict the
strain based FIPs of microstructures under cyclic loading. This
model implicitly includes different type of c0 precipitates in a
homogenized sense. The effects of c0 precipitates and grain size
are introduced into the constitutive model by parameters such as
volume fraction and equivalent diameters of primary, secondary,
and tertiary precipitates. As a result, the two-phase microstructure
is modeled by an equivalent homogenized single phase polycrystal
microstructure. This is computationally convenient for applying
model reduction techniques on microstructure features. Adaptive
sparse grid collocation (ASGC) [7] is adopted to solve the underly-
ing stochastic equations and construct the distribution of the prop-
erties of interest given the random input. Marginal distributions
and convex hulls of FIPs are constructed and the correlation be-
tween FIPs is probed. The results are validated by comparing with
MC simulations.

The organization of the paper is as follows. The representation
of a microstructure and the mathematical framework of PCA/KPCA
are briefly reviewed in Section 2. Emphasis is on the KPCA formu-
lation. In Section 3, the polynomial chaos (PC) representation of the
random variables is built. Homogenized superalloy polycrystal
elasto-plasticity constitutive model along with the estimation of
the FIPs are introduced as the deterministic simulator in Section 4.
Numerical examples are presented in Section 5. The distributions
and convex hulls of FIPs corresponding to certain statistically con-
strained microstructures are computed. Both MC and ASGC meth-
ods are adopted and convergence with increasing dimensionality
of the reduced-order stochastic space is examined. Conclusions
and discussion are provided in Section 6.
2. Construction of microstructure stochastic input model

2.1. Microstructure representation

Features of two-phase polycrystals include topology, texture
(orientation of grains), and volume fraction of each phase. The
microstructure topology is here defined in terms of grain shape
and grain size [35]. For a polycrystalline alloy microstructure, its
material properties are mostly determined by these three features.
In order to model microstructure uncertainty, these features are
considered as random variables. Appropriate mathematical
descriptions of them are needed. A low-dimensional representa-
tion of the microstructure will be used as the stochastic surrogate
input model to allow an efficient computation of the variability of
the microstructure properties.
The two-phase grain structure is modeled in a homogenized
sense in this work. As a result, no c0 particles are explicitly mod-
eled. Each constituent grain of the microstructure is considered
as a homogenized single crystal which takes the effective proper-
ties of both phases. A schematic of an explicit (c + c0) structure of
a grain and its equivalent homogenized model is demonstrated
in Fig. 1. The effect of the second phase on material properties
can be taken into account by introducing particular parameters
in the constitutive model, which will be discussed in Section 5.

Statistical volume elements (SVEs) of polycrystalline alloy
microstructures are represented as aggregates of discrete grains
associated with specific orientations and phases (see Fig. 2a). As
we implicitly model the two-phase material in a homogenized
sense, each grain in the microstructure is effectively the combina-
tion of c matrix and c0 precipitates aligning in the same orientation.
An array containing both sizes and orientations of finite number of
grains can be adopted as the descriptor of the microstructure
(Fig. 2b). For a microstructure composed of M grains, the first M
components of the feature array are sizes of homogenized grains
sorted in ascending order and the rest 3M components are the cor-
responding orientations described by Rodrigues parameters [36],
an axis-angle representation that consists of three components de-
fined in Eq. (1):

r ¼ w tan
h
2
; ð1Þ

where r = {r1,r2,r3} are the three Rodrigues components;
w = {w1,w2,w3} gives the direction cosines of the rotation axis with
respect to microstructure coordinates; and h is the rotation angle.

In [8], we have used a similar descriptor for single phase poly-
crystals. Model reduction was implemented for each feature and
then combined to represent a microstructure. In this work, we will
study the effects of each feature separately and determine the one
that dominates fatigue properties of superalloy microstructures.
We will start with a set of high-dimensional microstructure feature
realizations represented by grain size and texture. These features
will then be mapped to a low-dimensional space.

We are given a set of correlated microstructure realizations. In
superalloy microstructures resulting from certain (e.g. deforma-
tion) process, the grain sizes, grain orientations (texture) and vol-
ume fraction of the c phase satisfy certain (statistical)
constraints. For grain size, the constraints are usually in the form
of low-order statistical moments. The lognormal distribution is
used often for describing polycrystalline Ni-based superalloy grain
sizes [26]. The c0 phase disperses in the c phase matrix as precipi-
tates described by their size and volume fraction. Three types of c0,
primary, secondary, and tertiary, are usually observed according to
their size and other attributes. In the homogenized two-phase
superalloy constitutive model, one needs in general to account
for the c0-phase uncertainty in addition to the grain size and orien-
tation variation. The effect of microstructure features on fatigue
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Fig. 3. Basic idea of KPCA. Left: In this non-Gaussian case, the linear PCA cannot
effectively capture the non-linear relationship among the realizations in the
original space. Right: After the non-linear mapping U, realizations become linearly
related in the feature space F. Linear PCA can now be performed in F.
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Fig. 2. (a) A 3D polycrystalline microstructure with 54 grains. (b) The descriptor of the microstructure. The first 54 components are the sizes of grains, and the last 162
components are Rodrigues parameters representing grain orientations.
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properties can be studied using the deterministic material point
simulator for different microstructure realizations.

2.2. Principal component analysis based model reduction

Stochastic microstructure representations are usually high-
dimensional, which makes the stochastic simulation intractable.
For example, a polycrystalline microstructure image containing
54 grains requires a 54-dimensional vector to store the grain size
information (not accounting for any constraints). When grain ori-
entations are included, this will end up to a 216-dimensional rep-
resentation (Fig. 2b). To facilitate the stochastic simulation, model
reduction techniques are introduced exploring the correlation
among the data to construct a low-dimensional surrogate repre-
sentation of the original microstructure space. The samples from
this surrogate space need to be mapped to the original space for
this technique to be practical. Uncertainty quantification of the
microstructure properties driven by the given microstructure real-
izations then becomes feasible.

In an earlier work [37], we developed a linear embedding meth-
odology to model the topological variations of composite micro-
structures satisfying some experimentally determined statistical
correlations. A model reduction scheme based on principal compo-
nent analysis (PCA) was developed. This model was successful in
reducing the representation of two-phase isotropic microstruc-
tures. However, most of the data sets contain essential non-linear
structures that cannot be effectively captured by linear model
reduction. To this end, a non-linear dimensionality reduction
(NLDR) strategy was proposed in [10] to embed data variations
into a low-dimensional manifold that serves as the input model
for subsequent analysis. Further, the methodology was applied to
construct a reduced-order model of a two-phase microstructure
and subsequently utilized as a stochastic input model to study
the effects of microstructure uncertainty on thermal diffusion. This
‘‘manifold learning’’ method was extended to polycrystals in [8,9],
where variability of mechanical response and thermal properties
due to topological and orientational uncertainties was examined.
This method does not provide a robust mathematical parametric
input model which reveals the inherent patterns. In addition, the
mapping between the original and the surrogate space is based
on the IsoMap [38] algorithm requiring computation of the
geodesic distance matrix among data. In general, this matrix may
not be well defined and the computation of the matrix could be
expensive.

Kernel principal component analysis (KPCA), which first non-
linearly maps the input to a ‘‘feature’’ space (the ‘‘feature’’ here re-
fers to a non-linear mapping which is different from the features
that are used to describe a microstructure) and then performs
PCA (see Fig. 3), is therefore introduced to resolve the issues affil-
iated with linear PCA and manifold learning model reduction. Suc-
cessful application of KPCA to modeling of random permeability
field of complex geological channelized structures was provided
in [39]. In this work, we introduce it for model reduction of the
homogenized superalloy polycrystalline microstructure. The
microstructures are described by the size and orientation attri-
butes of all constituent grains. A set of grain size and orientation
samples are given as the initial input. These samples are generated
by simulation. It is assumed that they are obtained through certain
random deformation processes and therefore satisfy some statisti-
cal constraints. We fix the number of grains to be 54 and the total
volume of the microstructure to be 10�3 mm3. Therefore, the mean
grain size is fixed. The initial grain size samples are generated
according to a lognormal distribution and the orientations are gen-
erated from a sequence of random deformation processes that will
be introduced in Section 6. After that, we will perform model
reduction solely on the sample data assuming that no other
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information is known (no information about what distribution the
grain size follows and what are the random variables controlling
the process to generate random textures). The algorithm of PCA/
KPCA is summarized below. More details of the mathematical for-
mulation can be found in [30,39,40].

2.2.1. Microstructure model reduction using KPCA
Define a complete probability space ðX;F;PÞ with sample

space X, which corresponds to all microstructures resulted from
certain random process, F � 2X is the r-algebra of subsets in X
and P : F! ½0;1� is the probability measure. Each sample x 2X
is a continuum field representing a microstructure that can be de-
scribed by a discretized representation, y ¼ ðy1; . . . ; yMÞ

T : X! RM .
M can be regarded as the number of features in a microstructure.
So each yi, i = 1, . . ., M is a random variable. The dimensionality
of the stochastic input is then the length of the vector y. Any micro-
structure-sensitive property A is a function of the microstructure
features: A ¼AðyÞ. Therefore, A is also random. To investigate
the variability of A for microstructures in X, we need to be able
to compute properties of any sample in X. However, only a finite
number of realizations {y1, . . . ,yN} of X are available. How to ex-
plore the space X based on a finite number of given microstructure
realizations (input data) becomes essential.

The dimensionality of the input, M, is often large. We need to
find a reduced order representation of the random field that is con-
sistent with the given data in some statistical sense. To be specific,
we want to find a form y = f(n), where n, of dimension much smal-
ler than the original input stochastic dimension M, are a set of
independent random variables with a specific distribution. There-
fore, by drawing samples n, we can obtain realizations of the
underlying random field, namely, full feature descriptions of
microstructures. KPCA/PCA is used for this purpose.

Given N realizations {y1, . . . ,yN} of a random field Y(x), where
each realization is represented as a M-dimensional vector yi 2 RM

(e.g. yi is a feature realization representing a microstructure by
grain size and/or texture), we can map them into a ‘‘feature’’ space
Fi = U(yi), i = 1, . . ., N. Notice that this ‘‘feature’’ space is in the con-
text of KPCA terminology and different from the microstructure
feature input. We will refer the initial microstructure feature input
space as the physical space. If U(y) = y, KPCA is identical to linear
PCA. The centered map ~U is:

~U ¼ UðyÞ � �U; ð2Þ

where �U ¼ 1
N

PN
i¼1UðyiÞ is the mean of the U-mapped data. The

covariance matrix C in the F space is then

C ¼ 1
N

XN

i¼1

~UðyiÞ~UTðyiÞ: ð3Þ

The dimension of this matrix is NF � NF, where NF is the dimension
of the ‘‘feature’’ space.

A kernel eigenvalue problem is formulated which uses only dot
products of vectors in the ‘‘feature’’ space. We first substitute the
covariance matrix into the l.h.s. of the eigenvalue problem

CV ¼ kV; ð4Þ
to obtain

CV ¼ 1
N

XN

i¼1

~UðyiÞ � V
� �

~UðyiÞ; ð5Þ

which implies that all solutions V with k – 0 lie in the span of
~Uðy1Þ; . . . ; ~UðyNÞ. Projecting V onto sample realizations

V ¼
XN

j¼1

aj
~UðyjÞ; ð6Þ
and multiplying Eq. (4) with ~UðyiÞ from the left, we obtain

1
N

XN

j¼1

aj

XN

k¼1

~UðyiÞ � ~UðykÞ
� �

~UðykÞ � ~UðyjÞ
� �

¼ k
XN

j¼1

aj
~UðyiÞ � ~UðyjÞ
� �

; ð7Þ

for i = 1, . . ., N. Note here that the vector a is not normalized. Defin-
ing the N � N kernel matrix K as the dot product of vectors in the
‘‘feature’’ space F:

K : Kij ¼ UðyiÞ �UðyjÞ
� �

; ð8Þ

the corresponding centered kernel matrix is then:

eK ¼ ~UðyiÞ � ~UðyjÞ
� �

¼ HKH: ð9Þ

In the centering matrix H ¼ I� 1
N 11T , I is the N � N identity matrix

and 1 = [11 . . .1]T is a N � 1 vector. Substituting Eqs. (8) and (9) into
Eq. (7), we arrive at the following kernel eigenvalue problem:

Nka ¼ eKa; ð10Þ

where a = [a1, . . . ,aN]T. In the following, for simplicity, we will de-
note ki as the eigenvalues of eK, i.e. the solutions Nki in Eq. (10).
We rewrite Eq. (10) in the following matrix form:eKU ¼ KU; ð11Þ

where, K = diag (k1, . . . ,kN) and U = [a1, . . . ,aN] is the matrix contain-
ing the eigenvectors of the kernel matrix eK, where column i is the
ith eigenvector ai = [ai1, . . . ,aiN]T.

Therefore, through Eq. (6), the ith eigenvector of the covariance
matrix C in the feature space can be shown to be [30,40]

Vi ¼
XN

j¼1

aij
~UðyjÞ: ð12Þ

Furthermore, the eigenvector Vi can be normalized. Since the eigen-
vectors ai from the eigenvalue problem Eq. (11) are already normal-
ized, the ith orthornormal eigenvector of the covariance matrix C
can be shown to be [30,40]

eV i ¼
XN

j¼1

~aij
~UðyjÞ; where ~aij ¼

aijffiffiffiffi
ki
p : ð13Þ

Let y be a realization of the random field, with a mapping U(y)
in F. According to the theory of linear PCA, U(y) can be decomposed
in the following way:

UðyÞ ¼
XN

i¼1

zi
eV i þ �U; ð14Þ

where zi is the projection coefficient onto the ith eigenvector eV i:

zi ¼ eV i � ~UðyÞ ¼
XN

j¼1

~aij
~UðyÞ � ~UðyjÞ
� �

: ð15Þ

From Eq. (8), it is seen that in order to compute the kernel
matrix, only the dot products of vectors in the feature space F
are required, while the explicit calculation of the map U(y) does
not need to be known. As shown in [30], the dot product can be
computed through the use of the kernel function. This is the so
called ‘‘kernel trick’’. The kernel function k(yi,yj) calculates the
dot product in space F directly from the vectors of the input
space RM:

kðyi; yjÞ ¼ UðyiÞ �UðyjÞ
� �

: ð16Þ
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The commonly used kernel functions are polynomial kernel and
Gaussian kernel.

We can write all the zi’s in a vector form Z :¼[z1, . . . ,zN]T:

Z ¼ AT ky þ b; ð17Þ

where A ¼ HeU; b ¼ � 1
N
eUT HK1 and eU ¼ ½~a1; . . . ; ~aN � with

~ai :¼ ½~ai1; . . . ; ~aiN�T and

ky ¼ ½kðy; y1Þ; . . . ; kðy; yNÞ�
T
: ð18Þ

Suppose the eigenvectors are ordered by decreasing eigenvalues
and we only work in the low-dimensional subspace which is
spanned by the first r eigenvectors. Then the decomposition in
Eq. (14) can be truncated after the first r terms:

UðyÞ �
Xr

i¼1

ziVi þ �U ¼
XN

i¼1

biUðyiÞ; ð19Þ

where b ¼ ArZr þ 1
N 1 and bi is its ith component. Since only the first

r eigenvectors are used, eUr ¼ ½~a1; . . . ; ~ar�. Ar ¼ HeUr is a matrix of size
N � r and Zr = [z1, . . . ,zr]Tis a r-dimensional column vector. Details
on the derivations of these equations can be found in [39].

Thus, given N samples from the original stochastic feature space
F, we can find an approximate r-dimensional subspace eF of F which
is spanned by the orthornormal basis eV i; i ¼ 1; . . . ; r. Similar to K–L
expansion, the expansion coefficients Zr are a r-dimensional ran-
dom vector that defines this subspace. By drawing samples of Zr

from it, we can obtain different realizations of U(y) through Eq.
(19). The stochastic reduced-order input model in the ‘‘feature’’
space can be defined as: for any realization Y 2 eF , we have

Yr ¼
XN

i¼1

biUðyiÞ ¼ Ub; with b ¼ Anþ 1
N

1: ð20Þ

Here, U = [U(y1), . . . ,U(yN)] is a matrix of size NF � N. The subscript
r emphasizes that the realization Yr is reconstructed using only the
first r eigenvectors. n:¼[ni, . . . ,nr]Tis a r-dimensional random vector.
If the probability distribution of n is known, we can then sample n

and obtain samples of the random filed in eF .
However, the probability distribution of ni is not known to us.

What we know is only the realizations of these random coefficients
ni, which can be obtained through Eq. (17) by using the available
samples:

nðiÞ ¼ AT kyi
þ b; i ¼ 1; . . . ;N: ð21Þ

Our problem then reduces to identify the probability distribution of
the random vector n :¼ [ni, . . . ,nr]T, given its N samples
nðiÞ ¼ nðiÞ1 ; . . . ; nðiÞr

h i
; i ¼ 1; . . . ;N. A polynomial chaos representation

is introduced in the next section for representing each component
of the random vector n in terms of another random vector with
known distribution.

Finally, according to the properties of the K–L expansion
[4,5,41] used in the ‘‘feature’’ space, the random vector n satisfies
the following two conditions:

E½ni� ¼ 0; E½ninj� ¼ dij
ki

N
; i; j ¼ 1; . . . ; r: ð22Þ

Therefore, the random coefficients ni are uncorrelated but not
independent.

By sampling n, we can reconstruct high-dimensional U-mapped
features in F space. By applying an appropriate ‘‘pre-image’’
scheme [40], realizations in the original physical space (namely,
microstructures) can be obtained. A weighted K-nearest neighbor
(KNN) pre-imaging algorithm has been designed in [10,39] and will
be adopted in this work (Section 4) for KPCA microstructure recon-
struction, while for PCA, the pre-imaging is directly performed
through Eq. (20) as U(y) = y.
In practice, the form of map U(y) is not known nor required.
Only the kernel function (dot product in the F space) k(yi,yj) is
needed. For linear PCA, the kernel function is simply the dot prod-
uct in the input space (1st order polynomial)

kðyi; yjÞ ¼ ðyi � yjÞ; ð23Þ

implying that U(y) = y; and for KPCA, various kernels may be cho-
sen. A commonly selected one is the Gaussian kernel (or radial basis
function (RBF)):

kðyi; yjÞ ¼ exp �
kyi � yjk

2

2r2

 !
; ð24Þ

where kyi � yjk2 is the squared L2-distance between two realiza-
tions. The kernel width parameter r is computed using the average
minimum distance between two realizations in the input space
[42]:

r2 ¼ c
1
N

XN

i¼1

min
j – i
kyi � yjk

2
; j ¼ 1; . . . ;N; ð25Þ

where c is a user-controlled parameter.

3. Polynomial chaos expansion of stochastic reduced-order
model

As explained in the last section, we need to draw samples n

from the reduced space and reconstruct microstructure realiza-
tions in order to investigate material property variability of micro-
structures. To this end, the reduced surrogate space needs to be
constructed and mapped to an appropriate distribution in which
sampling is convenient. Polynomial chaos expansion (PCE)
[5,32,33] is therefore introduced to represent n as a function of
Gaussian or uniform random variables g. As mentioned before,
the components of n are uncorrelated but not necessarily indepen-
dent. Although Rosenblatt transformation [43] can be used to
decompose the problem to a set of independent random variables,
this is computationally expensive for high-dimensional problems.
In this work, we assume the independence between the compo-
nents of n. It has been shown in various applications [41,44] that
this assumption gives rather accurate results.

Following the independence assumption of ni, each of them can
be expanded onto a one-dimensional polynomial chaos (PC) basis
of degree p:

ni ¼
Xp

j¼0

cijWjðgiÞ; i ¼ 1; . . . ; r; ð26Þ

where the gi are i.i.d. random variables. The random basis functions
{Wj} are chosen according to the type of random variable {gi} that
has been used to describe the random input. For example, if Gauss-
ian random variables are chosen then the Askey based orthogonal
polynomials {Wj} are chosen to be Hermite polynomials; if gi are
chosen to be uniform random variables, then {Wj} must be Legendre
polynomials [32].

Gaussian–Hermite and Uniform-Legendre formats will be con-
sidered for the reconstruction of reduced-order random variables
(see Section 6). The PC coefficients are computed as

cij ¼
E niWjðgiÞ
� �

E W2
j ðgiÞ

h i : ð27Þ

If Gaussian–Hermite chaos is chosen, Eq. (27) can be expressed as

cij ¼
1ffiffiffiffiffiffiffi
2p
p

j!

Z þ1

�1
niWjðgiÞe�

g2
i
2 dgi; ð28Þ

i ¼ 1; . . . ; r; j ¼ 0; . . . ; p:
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If Uniform-Legendre is chosen, Eq. (27) becomes

cij ¼
2jþ 1

2

Z 1

�1
niWjðgiÞdgi; i ¼ 1; . . . ; r; j ¼ 0; . . . ;p: ð29Þ

A proper method is needed to evaluate these integrals. How-
ever, it is noted that the random variable n does not belong to
the same stochastic space as g, and we only have a number of N
realizations of n. The distribution of n is invisible. A non-linear
mapping C: g ? n is thus needed which preserves the probabilities
such that C(g) and n have the same distributions. A non-intrusive
projection based on empirical cumulative distribution functions
(CDFs) of samples developed in [41] is utilized to build the map.
The integral in Eq. (27) is then computed using Gauss quadrature.

The non-linear mapping C: g ? n can be defined as shown be-
low for each ni:

n
¼d
CiðgiÞ; Ci � F�1

ni
	 Fgi

; ð30Þ

where Fni
and Fgi

denote the CDFs of ni and gi, respectively. Here, the
equalities, ‘‘¼d ’’ is interpreted in the sense of distribution such that
the probability density functions (PDFs) of random variables on
both sides are equal. The marginal CDF of the samples ni can be
evaluated numerically from the available data. Kernel density esti-

mation is used to construct the empirical CDF of ni. Let nðsÞi

n oN

s¼1
be N

samples of ni obtained from Eq. (15). The marginal PDF of ni is then:

pni
ðniÞ �

1
N

XN

s¼1

1ffiffiffiffiffiffiffi
2p
p

s
exp � ni � nðsÞi

2s2

 !
: ð31Þ

The marginal CDF of ni is obtained by integrating Eq. (31) and the
inverse CDF can be computed.

Having the map Ci, the coefficients cij are subsequently com-
puted via Gauss quadrature.

After mapping the reduced space to Gaussian or uniform distri-
bution, Monte Carlo or adaptive sparse grid collocation (ASGC) can
be used to sample new realizations. Since the sampling space of
ASGC is a unit hypercube [0,1]h, we need to further map the inde-
pendent Gaussian ðNð0;1ÞÞ or uniform ðUð�1;1ÞÞ variables to the
hypercube based on CDF.

gi ¼ !iðmiÞ; !i ¼ F�1
gi
; i ¼ 1; . . . ; r; ð32Þ

where mi 
 Uð0;1Þ is the sample space of the ith component of
ASGC, Fgi

is the CDF of gi.

4. The pre-image problem in KPCA

The sampled random variables after reconstruction (Eq. (26))
are reduced-order representations. For linear PCA, the recovery of
a microstructure is straightforward using Eq. (20), since
Y = U(y) = y. For KPCA, the reconstructed reduced-order represen-
tations are in the ‘‘feature’’ space F. Through Eq. (20), we can find
the high-dimensional representations, but still, in the ‘‘feature’’
space (U(y) – y). However, what we need are the realizations in
the physical input space RM , which requires the inverse mapping
y = U�1(X). Recall that in order to construct the eigenvalue prob-
lem in the feature space, the mapping Y = U(y) is not necessary
as long as the kernel function is provided. Therefore, the inverse
mapping needs to be constructed approximately. This inverse
mapping problem is known as the ‘‘pre-imaging’’ problem. For
each realization Y in the ‘‘feature space’, it provides an approxima-
tion of the corresponding realization in the physical input space,
i.e. ŷ � U�1ðYÞ.

A weighted K-nearest neighbor scheme is adopted for finding
the pre-images. The basic idea is that for an arbitrary realization
Y in F, we can first compute its distances ~di; i ¼ 1; . . . ;K to the
K-nearest neighbors Yi, i = 1, . . ., K in F. Then the distances di,
i = 1, . . ., K between its counterpart ŷ and K-nearest neighbors, yi,
i = 1, . . ., K, in the physical space are recovered. The pre-image ŷ
is then computed by

ŷ ¼
PK

i¼1
1
di

yiPK
i¼1

1
di

: ð33Þ

The distance between Y and U(yi) in the feature space is defined
as

~d2
i ðY;UðyiÞÞ :¼ kY �UðyiÞk

2 ¼ kYk2 þ kUðyiÞk
2 � 2YT

r UðyiÞ; ð34Þ

for i = 1, . . ., N. Recall that for Gaussian kernel, k(yi,yi) = 1 and
Y ¼

PN
i¼1biUðyiÞ. N is the total number of the given data (micro-

structure realizations). Then each feature distance
~d2

i Y;UðyiÞð Þ; i ¼ 1; . . . ;N can be computed in the following matrix
form [39]:

~d2
i ¼ 1þ bT Kb� 2bT kyi

; ð35Þ

for i = 1, . . ., N.
Denote the vector ~d2 ¼ ½~d2

1; . . . ; ~d2
N�

T and we can sort this vector
in ascending order to identify the K-nearest neighbors of Y from
Uð~yiÞ; i ¼ 1; . . . ;n.

On the other hand, the squared feature distance between the U-
map of the pre-image ŷ and U(yi) is given as:

d̂2
i UðŷÞ;UðyiÞð Þ ¼ kUðŷÞ �UðyiÞk

2

¼ kðŷ; ŷÞ þ kðyi; yiÞ � 2kðŷ; yjÞ
¼ 2 1� kðŷ; yiÞð Þ; ð36Þ

for i = 1, . . ., N. Note that in the derivation above, we used that
kðŷ; ŷÞ ¼ kðyi; yiÞ ¼ 1 for a Gaussian kernel. Furthermore, the
squared input-space distance can be computed from the following
equation:

kðŷ; yiÞ ¼ exp �kŷ � yik
2

2r2

 !
;

from which we obtain

d2
i ¼ kŷ � yik

2 ¼ �2r2 logðkðŷ; yiÞÞ; ð37Þ

for i = 1, . . ., N. Substituting the expression of kðŷ; yjÞ from Eq. (36)
into Eq. (37), one arrives at

d2
i ¼ kŷ � yik

2 ¼ �2r2 log 1� 0:5d̂2
i

� �
; ð38Þ

for i = 1, . . ., N. Because we try to find an approximate pre-image such
thatUðŷÞ � Y, it is straightforward to identify the relationship ~d2

i � d̂2
i .

Therefore, the squared input-distance between the approximate
pre-image ŷ and the ith input data realization can be computed by:

d2
i ¼ kŷ � yik

2 ¼ �2r2 log 1� 0:5~d2
i

� �
; ð39Þ

for i = 1, . . ., N and where ~d2
i is given by Eq. (35).

Finally, the pre-image ŷ for a feature space realization Y is given
by Eq. (33). It is noted that here we use the K-nearest neighbors in
the ‘‘feature’’ space. However, they are the same as the K-nearest
neighbors in the input space since Eq. (39) is monotonically
increasing. Therefore, the pre-image ŷ of an arbitrary realization
in the ‘‘feature’’ space is the weighted sum of the pre-images of
the K-nearest neighbors of Y in the ‘‘feature’’ space, where the
nearest neighbors are taken from the samples yi, i = 1, . . ., N. A un-
ique pre-image can now be obtained using simple algebraic calcu-
lations in a single step (no iteration is required) that is suitable for
stochastic simulation.
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5. Two-phase crystal plasticity constitutive model

The crystal plasticity constitutive model is critical for predict-
ing the mechanical properties of polycrystalline materials. The
previously developed single-phase constitutive model for FCC
crystals [45] is here extended to two-phase superalloy, IN 100.
In this material, the second phase, c0, disperses in the c phase
in three forms: primary (large particles that may not exist
due to insufficient heat treatment), secondary (medium size
particles) and tertiary (particles of small size and low volume
fraction) precipitates. The strength of the superalloy is signifi-
cantly reinforced due to the existence of these particles. A
homogenized superalloy constitutive model will be adopted to
study the polycrystalline microstructure behavior. The second
phase configuration is not explicitly modeled. Effects from the
second phase are taken into account through particular parame-
ters in the constitutive model. In the homogenized model, we
take the effective property of both phases in a single phase
medium representation.

Cube slip h110i{100} systems are introduced to take cross slip
mechanism at high temperatures into consideration. The rate
dependent flow rule which estimates the shearing rate on each slip
system includes a back force term for the modeling of the Baushin-
ger effect arising principally from matrix dislocation interaction
with c0 phase. The effect of volume and size of c0 precipitates on
material strength is taken into account by constitutive parameters.
The constitutive equations are summarized below and detailed in
[25,26,28].

The flow rule of slip system a is

_cðaÞ ¼ _cðaÞ0
jsðaÞ � vðaÞk j � jðaÞk

DðaÞk

* +n1
"

ð40Þ

þ _cðaÞ1
jsðaÞ � vðaÞk j

DðaÞk

* +n2
#

sgnðsðaÞ � vðaÞk Þ; ð41Þ

where _cðaÞ0 is the initial shearing rate, DðaÞk is the drag stress assumed
to be constant. k = {oct,cub} refers to the octahedral and cube slip
systems, respectively. The function hxi returns x if x > 0 and returns
0, otherwise. The resolved shear stress on the a slip system s(a) is
computed by

sðaÞ ¼ T : mðaÞ
0 � nðaÞ0

� �
; ð42Þ

where T is the PK-II stress and mðaÞ
0 and nðaÞ0 are vectors in the slip

direction and normal to the slip plane, respectively, in the original
configuration, since a total Lagrangian algorithm is adopted. T is re-
lated to local elastic deformation gradient Fe via the fourth-order
stiffness tensor Ce:

T ¼ Ce � E ¼ 1
2

Ce � ðFeTFe � IÞ: ð43Þ

The evolution of the slip resistance jðaÞk ðk ¼ cub;octÞ follows the
Taylor strain hardening law determined by dislocation density qðaÞk :

jðaÞk ¼ jðaÞ0;k þ atlmixb
ffiffiffiffiffiffiffiffi
qðaÞk

q
; ð44Þ

where at ¼ h0:1� 0:68f 0p1 þ 1:1f 02p1i; lmix ¼ ðfp1 þ fp2 þ fp3Þlc0 þ fmlc.
lc0 and lc are shear moduli for c0 precipitates and c matrix, respec-
tively. The magnitude of Burgers vector is b ¼ ðfp1 þ fp2 þ fp3Þbc0þ
fmbc. fp1; f p2; f p3 are volume fractions of primary, secondary, and
tertiary c0 precipitates, respectively, and fm = 1 � fp1 � fp2 � fp3 is

the volume fraction of c matrix phase. f 0p1 ¼
fp1

fp1þfm
; f p2 ¼

fp2
fp2þfm

and

fp3 ¼ fp3
fp3þfm

. For different slip systems, the initial slip resistance can

be evaluated by
jðaÞ0;oct ¼ sðaÞ0;oct

� �nk
þ wnk

oct

h i1=nk

þ ðfp1 þ fp2ÞsðaÞns ;

jðaÞ0;cub ¼ sðaÞ0;cub

� �nk
þ wnk

cub

h i1=nk

; ð45Þ

where

wk ¼ cp1

ffiffiffiffiffiffiffiffiffiffi
w

f 0p1

d1

s
þ cp2

ffiffiffiffiffiffiffiffiffiffi
w

f 0p2

d2

s
þ cp3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wf 0p3d3

q
þ cgrd

�0:5
gr ; w

¼ CAPB

CAPB�ref
; ð46Þ

and

sðaÞns ¼ hpesðaÞpe þ hcbjsðaÞcb j þ hsesðaÞse ; ð47Þ
in which CAPB is the anti-phase boundary energy density here taken
be equal to CAPB�ref, di, i = 1, 2, 3 are the sizes of precipitates, and dgr

is the grain size.
The dislocation density evolution has the following form:

_qðaÞk ¼ h0 Z0 þ k1;k

ffiffiffiffiffiffiffiffi
qðaÞk

q
� k2;kqðaÞk

	 

j _cðaÞj; Z0

¼ kd

bddeff
; ddeff �

2
d2d

� ��1

: ð48Þ

The evolution of the back stress vðaÞk is also based on dislocation
density and shear rate:

_vðaÞk ¼ Cv glmixb
ffiffiffiffiffiffiffiffi
qðaÞk

q
sgn sðaÞ � vðaÞk

� �
� vðaÞk

	 

j _cðaÞj; ð49Þ

g ¼
g0;kZ0

Z0 þ k1;k

ffiffiffiffiffiffiffiffi
qðaÞk

q ;

where Cv ¼ 123:93� 433:98f 0p2 þ 384:06f 02p2.
An implicit iterative algorithm is used for the solution of the

non-linear constitutive equations. In initial slip resistance j0,k,
the grain size effect is introduced in the form of the Hall–Petch
law j / d�0:5

gr .
The parameters in the constitutive model can be calibrated by

experimental results for specific superalloys (e.g. IN 100). In the
current work, the same parameters for superalloys at 650�C listed
in [25] are adopted. For additional information about the constitu-
tive model refer to [26,27].

Strain based fatigue indicator parameters (FIPs) related to small
crack formation and early growth are extracted as the measure of
fatigue resistance, or more precisely as a measure of driving forces
for fatigue crack formation [24]. The four FIPs of interest are the
cumulative plastic strain per cycle (Pcyc), which correlates to the
crack incubation life; the cumulative net plastic shear strain mea-
sure (Pr), which correlates with dislocations pile-up on grain bound-
aries; the Fatemi–Socie parameter (PFS), which relates to the small
crack growth; and the maximum range of cyclic plastic shear strain
parameter (Pmps) [26]. The definitions of these FIPs are as follows.

The cumulative plastic strain per cycle (Pcyc):

Pcyc ¼
Z

cyc

ffiffiffi
2
3

r
_pdt ¼

Z
cyc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

Dp : Dp

r
dt; ð50Þ

where Dp is the plastic rate of deformation tensor. The crack incuba-
tion life (NInc.) is related to a critical value, pcrit, i.e.,

PcycNinc ¼ pcrit: ð51Þ

The cumulative net plastic shear strain measure (Pr):

Pr ¼max
Z

cycle

_�p
ijnimjdt

� �
; ð52Þ

where m is the direction along any given plane with normal n. The
maximum value of this parameter is obtained along all possible slip
directions over all possible planes for one cycle.
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The Fatemi–Socie parameter (PFS):

PFS ¼
Dcp

max

2
1þ kI rmax

n

ry

 �
; ð53Þ

where Dcp
max is the maximum range of cyclic plastic shear strain,

rmax
n is the peak tensile stress normal to the plane associated with

this maximum shear range and ry is the cyclic yield strength esti-
mated by the Von-Mises stress at the yield strain �y. Here, we
choose �y = 0.77%. The parameter kq could be a function of several
material properties in addition to the multiaxial strain state. In
the current work, a constant value kq = 0.5 is used as suggested in
[26].

The maximum range of cyclic plastic shear strain parameter
(Pmps):

Pmps ¼
Dcp

max

2
: ð54Þ

This parameter is used when the incubation life is completely con-
trolled by the irreversible motion of the dislocations with no assist
of normal stress, namely, kq = 0 in Eq. (53).
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Fig. 5. (a) A 3D finite element realization of polycrystalline microstructure. Each color r
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Strain

St
re

ss
 (M

Pa
)

-0.006 -0.004 -0.002 0 0.002 0.004 0.006

-500

0

500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(a)

Fig. 4. (a) Stress–strain response during three loops of cyclic loading. The strain rate i
An example of Nickel-based superalloy microstructure consist-
ing of 54 grains having random orientations in a 10�3 mm3 volume
subjected to cyclic loading (tension and compression along z-direc-
tion) is demonstrated below. The volume fractions and sizes of c0

precipitates are given by fp1 = 0, fp2 = 0.42, d2 = 108 nm, fp3 = 0.11,
d3 = 7 nm. Mechanical behavior of the microstructure is controlled
by the constitutive model introduced above. All the FIPs are com-
puted throughout the third deformation loop. The last non-Schmid
term sðaÞns in jðaÞ0;oct is assumed to be 0. This is an approximation as its
contribution to threshold stress is not insignificant. The stress–
strain response of cyclic loading condition with three loops and
the normalized distributions of the FIPs are plotted in Fig. 4. Note
that the x-axis in both Fig. 4a is true strain, not plastic strain. The
maximum FIPs over the entire microstructure are
maxPcyc = 1.51 � 10�2, maxPr = 1.12 � 10�4, maxPFS = 6.50 � 10�3,
and maxPmps = 5.98 � 10�3.

It is worth mentioning that the Taylor model is used to con-
trol the deformation of the microstructure to allow efficient
stochastic simulation to be discussed next. As a result, all grains
in the microstructure are subjected to the same deformation at
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Fig. 7. Distributions of maximum FIPs extracted from the 1000 initial sample microstructures. The solid curves are obtained by considering both grain size and texture
features as random sources. The dashed curves are for the case with random texture but with fixed sizes assigned to all grains in the microstructure. (a) Max Pcyc; (b) Max Pr;
(c) Max PFS; (d) Max Pmps.
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Table 1
Statistics of the maximum FIPs computed from three cases of initial samples:
‘‘Texture’’ means only texture uncertainty is considered; ‘‘Grain size’’ means only that
only grain size uncertainty is considered; and ‘‘Combined’’ means that both grain size
and texture uncertainties are considered.

Texture Grain size Combined

Max Pcyc mean 1.49 � 10�2 1.50 � 10�2 1.49 � 10�2

Max Pcyc std 5.02 � 10�4 2.92 � 10�5 5.21 � 10�4

Max Pr mean 1.18 � 10�4 1.17 � 10�4 1.17 � 10�4

Max Pr std 7.53 � 10�6 6.50 � 10�7 7.34 � 10�6

Max PFS mean 6.13 � 10�3 6.33 � 10�3 6.15 � 10�3

Max PFS std 3.41 � 10�4 1.41 � 10�5 3.60 � 10�4

Max Pmps mean 5.67 � 10�3 5.88 � 10�3 5.70 � 10�3

Max Pmps std 3.03 � 10�4 6.67 � 10�6 3.28 � 10�4
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Fig. 9. Plots of the energy spectrum for PCA and KPCA on texture feature. The value
of y-axis is the total energy proportion captured by the first x principal components.
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each time step. Heterogeneity of the deformation field due to dis-
tinct strength of different grains (induced by grain size, orienta-
tion, etc.) is not considered. The distributions of FIPs in the
microstructure predicted in this model may not be very accurate
but they serve as reasonable fatigue indicators for one grain. We
also conducted a 3D finite element (FE) analysis on a cubic
polycrystalline microstructure with 54 grains (Fig. 5a). The
microstructure is discretized using 7 � 7 � 7 brick elements.
The maximum and average values of FIPs over all the Gauss
points of all elements within an individual grain are evaluated
as the representatives of the fatigue driving force of the corre-
sponding grain. The maximum of the grain level FIPs over the
entire microstructure are maxPcyc, max = 1.99 � 10�2, maxPr, max =
8.16 � 10�4, maxPFS, max = 7.90 � 10�3, maxPmps, max = 6.76 � 10�3,
maxPcyc,ave = 1.49 � 10�2, maxPr,ave = 4.46 � 10�4, maxPFS,ave = 6.21 �
10�3, and maxPmps,ave = 5.44 � 10�4. Here, Px,max/Px,ave denotes the
maximum/average Px over all Gauss points within one grain, and
maxPx,max/maxPx,ave is the maximum of Px,max/Px,ave over all grains
in the microstructure. The contour plot of the maximum range of
cyclic plastic shear strain parameter, Pmps, is plotted in Fig. 5b.

The true stress–strain curve and normalized distributions of
FIPs are demonstrated in Fig. 6. We see that the Taylor simulation
gives similar stress–strain response and distributions of FIPs as the
FE model. Most of the FIPs obtained from the Taylor model are
close to the grain level average FIPs obtained in the FE model. Con-
sidering the computational cost that the Taylor model takes only
3 min for one simulation while the FE model takes about 9 h (the
efficiency is evaluated here for one processor), we will adopt the
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Fig. 8. (a) A PCA reconstructed texture feature compared with the original test sample. T
the total ‘‘energy’’. (b) A KPCA reconstructed texture feature compared with the origina
captures 81.5% of the total ‘‘energy’’.
Taylor model as the deterministic solver in the further investiga-
tion of the variability of FIPs. The fatigue property of a microstruc-
ture under cyclic loading can be measured by the maximum FIPs
over all grains.
6. Numerical examples

Numerical examples are presented to study the probabilistic
distribution of the FIPs of Nickel-based superalloy polycrystalline
microstructures using PCA-based model reduction techniques, PC
representation and sparse grid collocation method. The determin-
istic solver adopts the two-phase polycrystal plasticity constitutive
model introduced earlier. The maximum FIPs over all grains are
used to measure fatigue properties of microstructures. In the fol-
lowing subsections, variability of FIPs due to topological and orien-
tational microstructure uncertainties are examined.

The available information of microstructure features is often gi-
ven as a limited number of samples that are obtained through a se-
quence of preprocessing. In the current work, we randomly
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he dimensionality of the reduced-order representation is 4, which captures 91.8% of
l test sample. The dimensionality of the reduced-order representation is 4, which
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generate 1000 microstructures through simulation. This operation
mimics the industrial random preprocessing and is only for the
generation of inherently correlated samples, based on which model
reduction would work. After that, the sample data will serve di-
rectly as the initial input to the stochastic simulation. The knowl-
edge about how the data was generated will not be known or
used in this part of the analysis. Each microstructure is composed
of 54 grains in a V = 1 � 10�3 mm3 domain. The mean grain volume
is therefore 1.85 � 10�5 mm3. By assuming cubic shape of all
grains, the mean size is hdgri = 0.0265 mm. As indicated in many
works, the grain size can be well described by a lognormal distri-
bution. Therefore, we generate grain sizes of a microstructure
according to a lognormal distribution defined as

pðdgrÞ ¼
1

dgr

ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p exp � lnðdgrÞ � l

2r2

� �
; ð55Þ

where dgr is the grain size, and l, r refer to the mean and
standard deviation of ln(dgr). The mean grain size is
hdgri = exp(l + r2/2), which takes the value 0.0265 mm as men-
tioned above. The procedure of generating grain size samples is
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as follows. For a single microstructure sample, we first generate
54 approximate grain sizes fd̂gr;i; i ¼ 1; . . . ;54g from the lognormal
distribution with l = lnhdgri � r2/2, where hdgri = 0.0265 mm and
r = 0.025. To avoid extreme large or small grains, all grain sizes
are constrained within the range 0:4hdgri < d̂gr;i < 2:5hdgri. If a
grain size falls beyond that range, a new one will be generated
until it satisfies the inequality. After obtaining all the 54 grain
sizes, we will compute the corresponding volumes (cube root)bV gr;i ¼ d̂3

gr;i; i ¼ 1; . . . ;54, by assuming spherical grains. Then, the
volume fraction fgr,i of each grain i will be obtained after normal-

ization: fgr;i ¼ bV gr;i=
P54

j
bV gr;j. The grain volume Vgr,i will be updated

by multiplying the volume fraction by the total volume of the
microstructure V = 0.001 (namely, Vgr,i = V � fgr,i, for i = 1, . . ., 54).
The grain sizes can be therefore determined by the resultant grain
volumes. Repeating this procedure 1000 times, we can obtain
1000 microstructure grain size samples. Assigning an arbitrary
texture to all grain size samples and putting them into a sequence
of random deformation process, we can derive 1000 random tex-
ture that will be collected as the initial texture to the next-step
stochastic simulation. To be specific, an arbitrary texture consisted
of 54 orientations is firstly assigned to 1000 microstructure sam-
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random variables obtained using Hermite or Legendre PCE. The distributions are constr
ples. Then, these microstructures are input into a sequence of
deformation modes controlled by three independent random
variables x1, x2 and x3.

L ¼ x1

0:5 0 0
0 0:5 0
0 0 �1

264
375þx2

0 0 0
0 1 0
0 0 �1

264
375þx3

0 �1 0
1 0 0
0 0 0

264
375;
ð56Þ

where the random variables x1, x2 and x3 determine the deforma-
tion rate L of different modes and vary uniformly from �0.002 s�1

to 0.002 s�1. The first mode is compression in the z direction, the
second mode is rotation, and the last mode is a shear deformation.
At each time step, the deformation of the microstructure is con-
trolled by the combination of these three modes, but for different
samples, the combination is different in terms of the deformation
rates x1, x2 and x3. At the end of 500 s, the 1000 resultant textures
were collected as the input texture database to the stochastic prob-
lem. Since our model only updates orientations of grains but leaves
their sizes untouched, the resultant microstructures would have the
same grain sizes as the input while the texture becomes random.
Moreover, the texture evolution is not significantly affected by the
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grain size according to the constitutive model. Therefore, the corre-
lation of texture and grain size features is quite weak.

After generating the 1000 grain size and texture samples, we
take them as the given input data to the following stochastic sim-
ulation investigating material properties due to initial microstruc-
ture uncertainties. They are the only accessible information, while
the knowledge of how they are generated is blind to the uncer-
tainty quantification process. The correlation within the feature
samples will be exploited by the construction of correlation matrix
through PCA/KPCA model reduction. Inserting random grain size or
orientation features to the model reduction, the surrogate micro-
structure representation is derived. Then, polynomial chaos expan-
sion (PCE) is used to map the reduced-order space to a known
distribution, form which samples can be easily drawn and ASGC
or/and MC can be conveniently introduced to solve for the variabil-
ity of FIPs. Distributions and convex hulls and FIPs will be con-
structed according to the solution. Simulations using different
models (i.e. linear/non-linear PCA, Uniform-Legendre/Gaussian–
Hermite PCE, ASGC/MC) are conducted and compared. The effect
of the selected dimensionality of the reduced space is also studied.
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Fig. 13. Distributions of the maximum FIPs computed by different methods. The PDFs m
drawn in the reduced space and mapped back to the texture input space. A fixed grain v
deterministic solver on these reconstructed microstructures and kernel density function
(a) Max Pcyc; (b) Max Pr; (c) Max PFS; (d) Max Pmps.
Here, we need to point out that grain sizes have to be greater
than zero after reconstruction from reduced order realizations.
To guarantee this, we perform model reduction on the logarithm
of grain volume fractions, ln(fgr,i) rather than on (fgr,i). To generate
a new grain size feature, we draw a sample n in the surrogate
space, and find its original representation y in the physical space,
which is an array of logarithms of grain volume fractions y = ln(fgr).
The real grain volume of the microstructure is then Vgr = Vexp(y),
where V is the total volume of the microstructure.

6.1. Monte Carlo validation

Monte Carlo simulation is conducted to validate various models
on computing the variability of FIPs. The purpose of MC is to vali-
date the performance of the PCA/KPCA model reduction and recon-
struction, as well as of the PC expansion. We will see from this
section that sampling from the reduced-order space is approxi-
mately equivalent to sampling in the physical input space, while
the obtained efficiency is significant. We will first project the given
microstructure snapshots (input data) to a reduced-order space
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arked as ‘Init’ are computed using the initial given data. For MC, 10,000 samples are
olume Vgr = 1.85 � 10�5 mm3 is assigned to all grains. FIPs are computed using the
is constructed based on data. The dimensionality of the low-dimensional space is 4.
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through PCA/KPCA and then map this reduced-order space through
PCE to a set of standard Gaussian ðNð0; IÞÞ or independent uniform
ðUð�1;1ÞÞ random variables. To generate new microstructure sam-
ples, we thus sample Gaussian or uniform distributions. These
samples are mapped back to the reduced space derived by PCA/
KPCA. Microstructures in the physical input space are then recov-
ered via pre-imaging. The FIPs are evaluated for many randomly
generated microstructures and the distributions of these proper-
ties will then be constructed through kernel density method and
compared with the distributions constructed based on the 1000
initially given samples. The MC results will also be used to verify
the ASGC simulations performed later on in this section.

First, we would like to examine which microstructure feature is
more substantially affecting the variability of FIPs. To this end, we
compute the statistics of FIPs of the 1000 initial samples in three
ways.

� Case A: a constant grain size vector is assigned to all the 1000
samples, and the texture varies from sample to sample. Without
loosing generality, we assume all grains have the same size
(dgr = 0.0265 mm, cube root), while the texture is randomly
generated as described above.
� Case B: the grain sizes of different microstructure samples are

randomly generated with mean size being 0.0265 mm as men-
tioned before. A deterministic texture is randomly selected from
the 1000 initial samples and assigned to all the microstructures.
Therefore, the grain size is the sole source of uncertainty.
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Table 2
Statistics of the maximum FIPs computed by different model reduction techniques with di
space of texture to a uniform distribution Uð0; IÞ. In the table, ‘‘Init’’ refers to the initial 10
reduced space constructed by linear PCA, and ‘‘KPCA-4dim’’ refers to 10,000 MC samples ge
used for the rest of the acronyms.

Init PCA-4dim PCA-5dim

Max Pcyc mean 1.49 � 10�2 1.49 � 10�2 1.49 � 10�2

Max Pcyc std 5.02 � 10�4 4.38 � 10�4 4.23 � 10�4

Max Pr mean 1.18 � 10�4 1.17 � 10�4 1.17 � 10�4

Max Pr std 7.53 � 10�6 7.97 � 10�6 7.97 � 10�6

Max PFS mean 6.13 � 10�3 6.16 � 10�3 6.16 � 10�3

Max PFS std 3.41 � 10�4 2.34 � 10�4 2.27 � 10�4

Max Pmps mean 5.67 � 10�3 5.69 � 10�3 5.70 � 10�3

Max Pmps std 3.03 � 10�4 2.12 � 10�4 2.03 � 10�4
� Case C: the 1000 texture samples are one to one linked to the
1000 grain size vectors to define microstructure samples, so
that the uncertainty of the two features can be considered
simultaneously.

For each of the above cases, we call the deterministic solver
1000 times and extract the values of the FIPs. The volume fraction
of primary c0 is 0 and that of secondary and tertiary c0 is set to be
0.42 and 0.11, respectively. The range of the cyclic strain is from
�0.007 to 0.007. The strain rate is selected to be 0.001 s�1. By com-
paring the distributions of the FIPs of these three cases, we find
that most of the distributions from Case A are very close to the cor-
responding distributions from Case C. Also, the variance of FIPs
caused by grain size uncertainty (Case B) is much smaller than that
caused by orientational uncertainty (Case A). Fig. 7 shows the PDFs
of maximum FIPs over microstructure domain constructed based
on 1000 initial samples for Case A and Case C, respectively. It is
seen that most of the PDFs for the two cases are very close except
that maxPcyc shows certain difference.

Comparing the statistics of the three cases (Table 1), we can see
that the mean and standard deviation (std) of Cases A and C are
very close to each other, while the variance of Case B is much smal-
ler than the other two cases. Therefore, we ignore the grain size
uncertainty while putting our focus on the texture uncertainty.
This treatment further reduces the dimensionality of the input
space without significantly influencing the evaluation of the
distribution of the FIPs. As we will see shortly, the reduced
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dimensionality of the grain size feature is larger than that of tex-
ture. However, the variation induced in FIPs is insignificant.

We next examine the model reduction of the input texture
space. The randomness will only be assigned to grain orientations,
while the volume of all grains is fixed at Vgr,i = 1.85 � 10�5 mm3,
i = 1, . . ., 54. The total dimensionality of the input microstructure
feature is 54 � 4 = 216, in which 54 dimensions are fixed grain
sizes and the rest 162 dimensions are random orientations. We
first construct the reduced model for the 1000 initial microstruc-
ture samples. Then, we arbitrarily choose the reduced coordinates
for one of the 1000 samples. After that, we reconstruct the micro-
structure feature (texture) using the chosen reduced coordinates.
The reconstructed and the original features are plotted and com-
pared in Fig. 8. We first apply the PCA method to reduce the input
space to 4 dimensions driven by the given samples. The total
energy proportion, defined by Eq. (57) captured by the largest 4
eigenvalues is 0.918 > 90% (see Fig. 9).

EnergyðrÞ ¼
Pr

i¼1kiPN
j¼1kj

; ð57Þ
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where r is the number of preserved largest eigenvalues ki and N is
the number of given samples. A reconstructed realization compared
with the original texture is depicted in Fig. 8a. We next repeat the
above calculations using KPCA to perform the non-linear model
reduction of the input texture samples. The parameter c in the ker-
nel width r estimation Eq. (25) is chosen to be 10. The total energy
captured by the largest 4 eigenvalues is 0.815, which is lower than
that captured in linear PCA. A reconstructed realization compared
with the original microstructure feature is depicted in Fig. 8b. Both
of the two model reduction techniques demonstrate good capability
of reducing and reconstructing microstructure features.

The energy spectrum of both linear PCA and kernel PCA are
plotted. It is observed that the first few eigenvalues capture the
majority of the total energy and PCA eigenvalues capture more en-
ergy than KPCA at the same dimension.

We next conduct a 10-fold cross validation on the 1000 initial
samples to test the performance of the two model reduction
schemes on the texture microstructure feature. For the first fold,
100 out of 1000 samples are used as the testing set to test the
reconstructed features from the PCA/KPCA model trained by the
remaining 900 samples. Then, we select another (different) 100
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Fig. 17. Distributions of the maximum FIPs due to grain size uncertainty computed by d
space and mapped back to the grain size input space. (a) Max Pcyc; (b) Max Pr; (c) Max P
samples as the testing set, and the rest 900 to be the training set.
The process is repeated 10 times until we have used all the 1000
samples as testing sample once. The average of the relative errors
between testing and reconstructed features is defined as

Errtest ¼
1
N0
XN0
i¼1

�i;

�i ¼
kyi � ŷikL2

kyikL2

; ð58Þ

where yi and ŷi are the testing samples and predicted features,
respectively, and N0 is the size of the testing set. The averaged rela-
tive errors for texture are plotted in Fig. 10. The mean error is
0.1201 for PCA and 0.1462 for KPCA. It is observed that the error
of PCA is smaller than that of KPCA, while both of them are below
15% when four principal components are preserved.

We next need to establish the mapping between the low-
dimensional surrogate space and a well-defined probabilistic dis-
tribution. By the independence assumption between the random
variables in the reduced-order representation, each component
8

9

10
x 10

4 max Pmps

PCA-10dim-GS
KPCA-10dim-GS
Init-GS

1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.2
x 10

-4

0

1

2

3

4

5

6

7
x 10

5

maxPr

PD
F

max Pr

PCA-10dim-GS
KPCA-10dim-GS
Init-GS

5.85 5.86 5.87 5.88 5.89 5.9 5.91 5.92
x 10

-3

0

1

2

3

4

5

6

7

maxPmps

PD
F

(b)

(d)

ifferent methods. For MC, 10,000 samples are drawn in the 10-dimensional reduced
FS; (d) Max Pmps.



B. Wen, N. Zabaras / Computational Materials Science 51 (2012) 455–481 471
can be approximated using one-dimensional PC basis of degree p. If
Gaussian random variables are to be mapped then Hermite polyno-
mials are chosen to be the PC basis. On the other hand, if the re-
duced space is mapped to a uniform distribution, Legendre
polynomials must be selected for Eq. (26). We here use the
Gaussian–Hermite and Uniform-Legendre PCs, respectively, for
different model reduction schemes and compare the reconstructed
features. The order of PC basis is set to be 12, which gives accurate
estimation to the reduced-order representation distributions
(Figs. 11 and 12). The distributions of the initial reduced variables
of microstructure features are computed from the given 1000 ini-
tial samples based on the histogram of the reduced samples de-
rived by PCA/KPCA (Eq. (15)). Alternatively, 10,000 random
variables are randomly sampled from the uniform or Gaussian dis-
tribution and mapped to the surrogate space via PCE (Eq. (26)). It is
noticed that Uniform-Legendre PCs give accurate representation to
all four reduced-order random variables, while Gaussian–Hermite
cannot fit the random variable n2 corresponding to the second
principal component very well. Thus, we will next perform further
stochastic simulations using only Uniform-Legendre PCs.

The marginal PDFs of the maximum FIPs of microstructures sat-
isfying given texture constraints computed by Monte Carlo using
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Fig. 18. Distributions of maximum FIPs of 10,000 MC samples computed based on PCA an
The distributions of FIPs of 1000 initial samples are also plotted as a reference. (a) Max
10,000 samples from the reduced space are plotted in Fig. 13, as
well as the distributions of the FIPs computed directly from the
1000 initial samples with various texture and fixed grain size
(the same distribution obtained in Case A). Uniform-Legendre
PCs are used to represent the reduced random variables. The agree-
ment of MC simulated PDFs using 10,000 samples and the PDFs ob-
tained using the given initial 1000 samples is achieved, which
validates the performance of model reduction. Both PCA and KPCA
capture the main features of the PDFs of the FIPs. The PCA results
seem to be more consistent with the initial samples.

The sampled mean and standard deviation of the maximum FIPs
obtained from different methods (some to be discussed later on)
are listed in Table 2. Most of the MC simulated statistics, especially
the means, agree quite well with the ones computed directly from
the 1000 initial data considering that only 4 random variables are
used to generate new samples. The PCA simulation gives closer
prediction to the sampled mean and variance obtained using only
the initial samples.

Following the same idea as for the texture, model reduction of
the grain size feature is also studied. Again, we assume only sec-
ondary and tertiary c0 precipitates dispersed in the c matrix with
fixed volume fractions (setting fp1 = 0, fp2 = 0.42 and fp3 = 0.11), so
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that the grain size effect can be captured. An arbitrary but deter-
ministic texture is assigned to all 1000 initial samples, whose grain
sizes are generated using the procedure described earlier with
mean size 0.0265 mm. The dimensionality of the random input is
now 54. To guarantee that the grain sizes are positive, we first
transform all grain volume fractions to logarithms. PCA/KPCA is
then used to compute the low-dimensional surrogate space of
the transformed grain sizes. New grain size samples are generated
by sampling in the reduced space and mapped back to the physical
space. The grain volume vector Vgr corresponding to a low-dimen-
sional representation n is computed as

Vgr ¼ V expðC�1ðnÞÞ; ð59Þ

where C is the PCA/KPCA model reduction map of the logarithmic
volume fraction to the low-dimensional space as defined in Eq.
(15), and V = 0.001 mm3 is the total volume of the microstructure.
We first apply the PCA method to reduce the dimensionality of
the stochastic input space. The correlation between grain size sam-
ples is weak since they are generated in a very random way. This
correlation is still captured by PCA even though the grain size gen-
eration procedure is not known during model reduction. We must
keep the first 10 principal components to capture more than 90%
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Fig. 19. Distributions of maximum FIPs of 10,000 MC samples computed based on KPCA a
6. The distributions of FIPs of 1000 initial samples are also plotted as a reference. (a) M
of the ‘‘energy’’. The total energy proportion captured by the largest
10 eigenvalues is 0.912. Using KPCA, the non-linear model reduc-
tion captures 0.892 of the total energy by the largest 10 eigenvalues.
The energy captured by the same number of eigenvalues in PCA is
close to that in KPCA for the grain size feature. Reconstructed real-
izations by PCA and KPCA compared with the original grain size fea-
ture are depicted in Fig. 14a. The newly sampled grain size features
are smoother than the initial samples. Both model reduction tech-
niques demonstrate good capability of reducing and reconstructing
the grain size feature. The energy spectrums of both PCA and KPCA
are shown in Fig. 14b. It is observed that the first few eigenvalues
capture the majority of the total energy and PCA eigenvalues cap-
ture a little more energy than KPCA at the same dimensionality.

The 10-fold cross validation for grain size feature is shown in
Fig. 15. The relative error for both cases is smaller than 1.6% with
PCA performing better than KPCA.

Polynomial chaos representation on reduced random variables
is also tested with 10,000 random samples in the reduced space.
The order p = 12 can accurately capture the distributions of all
the reduced random variables derived from the initial samples. In
Fig. 16, we show PC expansion of the first 2 random variables who
have the largest variance for both PCA and KPCA. The agreement
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between identified and initial random variables distributions is ob-
served. Both Unform-Legendre and Gaussian–Hermite PCs give
accurate estimation on the distributions. To be consistent with
the texture computation, we adopt Uniform-Legendre PCE to
map the reduced space to a uniform distribution where new sam-
ples will be generated.

The reconstructed distributions of the FIPs and those directly
extracted from the initial samples (Case B: fixed texture, random
grain sizes) are plotted in Fig. 17. We notice that the variance of
FIPs induced by the grain size effect is very small just as we dis-
cussed earlier (one order of magnitude smaller than texture in-
duced standard deviation as shown in Table 1). The PCA gives
very accurate prediction to the initial data, while KPCA captures
well the main characters but provides slightly different estimation
to the variance.

We also discover that the reduced dimensionality of the grain
size feature is 10, which is much larger than the texture feature
4 dimensions were enough for texture reduction in capturing
90% energy. It is inefficient to explore high-dimensional stochastic
input space to capture very small variability in the properties.
Therefore, we will focus on texture uncertainty in the following
examples.
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Fig. 20. Convergence test of the distributions of maximum FIPs computed by PCA. 500
Comparison with 1000 initial samples is shown. (a) Max Pcyc; (b) Max Pr; (c) Max PFS; (d
Convergence tests as the dimension of the reduced order space
increases are performed for PCA and KPCA on the texture feature.
The Uniform-Legendre PCs are used. We plot the marginal PDFs
of maximum and volume averaged FIPs extracted from 10,000
MC samples when 4, 5 and 6 principal components are preserved
in Figs. 18 and 19, respectively, for PCA and KPCA. Placed in the fig-
ures are also the distributions of FIPs obtained using only the initial
samples (Case A: random texture and fixed grain sizes). We ob-
serve great consistence of the simulations with increasing dimen-
sionality of both PCA and KPCA.

The sampled mean and standard deviation of the maximum FIPs
computed using different methods and different reduced dimen-
sions are listed in Table 2. It is observed that all the examples (from
r = 4 to r = 6) give consistent prediction, while the PCA predictions
are closer to the FIPs obtained using only the initial samples.
Improvement on the predicted FIPs is observed as the dimension-
ality of the reduced space increases, especially for maxPr.

The convergence test of MC simulations as we increase the
number of samples is conducted at r = 6 (Figs. 20 and 21). Good
convergence is achieved using 10,000 random samples.

It was shown that both PCA and KPCA provide good prediction
on FIPs distributions and low-order statistics. In most cases, PCA
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gives closer prediction on mean and standard deviation of FIPs
than KPCA at the same reduced dimensionality for the current
microstructure data set. This is a bit surprising result considering
that KPCA is a non-linear dimensionality reduction method. The
reasons for this outcome may include: (1) the variation of the ini-
tial samples is too small to show the non-linear nature of the
microstructure data; (2) the accuracy of the K nearest neighbor-
hood pre-imaging strategy adopted is not good enough to provide
precise microstructure reconstruction; (3) the kernel selected here
could not effectively reduce the non-linearity of the data. More-
over, the MC prediction of the mean FIPs is consistent with the ini-
tial samples, while the standard deviation prediction contains
small deviation.
6.2. Adaptive sparse grid collocation

The variability of FIPs is also examined through the adaptive
sparse grid collocation (ASGC) method, which has been proved to
be more efficient then Monte Carlo method for stochastic problems
of moderately high dimensionality and at the same time provides
control of the interpolation error in the stochastic support space
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Fig. 21. Convergence test of the distributions of the maximum FIPs computed by KPCA. 5
Comparison with 1000 initial samples is shown. (a) Max Pcyc; (b) Max Pr; (c) Max PFS; (d
[7]. Essentially sparse grids construct an interpolant of the function
of interest in the multi-dimensional stochastic space. As before,
Uniform-Legendre PCs are adopted to expand the reduced-order
texture features as they produce better reconstruction of the re-
duced random variable distributions. Both PCA and KPCA are em-
ployed. The uncertainty source is assumed to be texture whose
reduced dimensionality varies from 4 to 6. In sparse grid colloca-
tion, the functions of interest (here the FIPs) u(t,n) are approxi-
mated by

ûd;qðt; nÞ ¼
X

kik 6 dþq

X
j2Bi

xi
jðtÞ � ai

jðnÞ: ð60Þ

The mean of the random solution is evaluated as:

Eðûd;qðtÞÞ ¼
X

kik 6 dþq

X
j2Bi

xi
jðtÞ �

Z
L

ai
jðnÞdn; ð61Þ

where q is the depth (level) of sparse grid interpolation and d is the
dimensionality of the stochastic space. Bi is a multi-index set. xi

j is
the hierarchical surplus, which is the difference between the func-
tion value u(t,n) at the current point n and interpolation value
ûd;q�1ðt; nÞ from the coarser grid in the previous level. ai

j is the
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d-dimensional multilinear basis functions defined by tensor prod-
uct. For the estimation of higher-order moments (kth order) of
the function of interest, we only need to change u to uk. The function
of interest u and its interpolation û in the current work are the max-
imum and volume averaged FIPs of the microstructure. The thresh-
old of the error indicator, defined in Eq. (62), for adaptivity is set to
be 10�4 for all computations. The error indicator ci

j measures the
contribution of each term in Eq. (61) to the integration value (mean
of the interpolated function) relative to the overall integration value
computed from the previous interpolation level. For error higher
than the threshold at a given point in the sparse grid, new support
nodes will be added in the neighborhood of this point at the next
level of interpolation [7]:

ci
j ¼
kxi

j �
R
L

ai
jðnÞdnkL2

kEkik�d�1kL2

: ð62Þ

We first focus only on texture uncertainty induced variability of the
FIPs. When PCA is adopted, the ASGC error converges below 10�4 at
level 8, namely, no new collocation nodes will be needed after level
8. Total number of 1399, 3059, and 6220 collocation nodes are gen-
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Fig. 22. Distributions of maximum FIPs obtained with ASGC based on linear PCA and Unif
Max Pcyc; (b) Max Pr; (c) Max PFS; (d) Max Pmps.
erated, respectively, for reduced space of dimensionality 4, 5, and 6.
Note that each collocation point requires the solution of the mate-
rial point simulator for given realizations of the random variables.

The marginal PDFs of maximum FIPs when different number of
principal components are preserved are plotted in Fig. 22. The con-
struction of the distributions of the FIPs is a post processing
operation in the ASGC method. After performing the ASGC simula-
tion, we uniformly sample 10,000 random points in the hypercube
where the sparse grid is defined. The FIPs corresponding to each
point are computed by interpolation using the basis obtained from
ASGC. Kernel density functions based on histograms of the samples
of the FIPs are therefore constructed. Comparison with MC simula-
tion when the reduced-order space is 6-dimensional is demon-
strated. We would like to point out that the data of MC used
here are identical with those in the earlier examples. They are
re-plotted here just for comparison purposes. ASGC distributions
show similar shapes with the results of MC simulations. However,
distributions of the FIPs predicted by ASGC are broadened (larger
variance) as we increase the dimensionality of the reduced space.

Using KPCA, the marginal PDFs of maximum FIPs with different
number of retained principal components are also extracted and
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presented in Fig. 23. The number of collocation points for r = 4 and
r = 5 after convergence at level 9 is 1647, 3633, respectively. For
r = 6, 7921 collocation points are generated up to level 10.

The statistics of the maximum FIPs evaluated by ASGC com-
bined with Uniform-Legendre PCE are tabulated in Table 3. Again,
the ASGC simulations provide close estimation of mean values
with MC, while the standard deviation demonstrates some small
difference.
Table 3
Mean and standard deviation of the maximum FIPs evaluated by ASGC. Uniform-Legendre

PCA-4dim PCA-5dim PCA-6d

Max Pcyc mean 1.49 � 10�2 1.49 � 10�2 1.49 �
Max Pcyc std 4.13 � 10�4 3.92 � 10�4 4.29 �
Max Pr mean 1.18 � 10�4 1.19 � 10�4 1.17 �
Max Pr std 9.29 � 10�6 1.09 � 10�5 1.17 �
Max PFS mean 6.17 � 10�3 6.19 � 10�3 6.20 �
Max PFS std 2.33 � 10�4 2.31 � 10�4 2.07 �
Max Pmps mean 5.70 � 10�3 5.70 � 10�3 5.70 �
Max Pmps std 1.86 � 10�4 1.69 � 10�4 1.30 �
The distributions of the FIPs (Figs. 22 and 23) become slightly
broader as the dimensionality of the reduced space increases.
However, the predicted standard deviation (Table 3) does not show
this trend. Moreover, most MC predicted PDFs of FIPs are narrower
than the ASGC constructed FIPs. However, the MC computed stan-
dard deviation of certain FIPs is larger than that evaluated through
ASGC. This possible inconsistency may arise from insufficient sam-
ples at the tails of the distributions and a need for a higher depth of
PCE is employed.

im KPCA-4dim KPCA-5dim KPCA-6dim

10�2 1.51 � 10�2 1.50 � 10�2 1.50 � 10�2

10�4 2.61 � 10�4 2.48 � 10�4 3.09 � 10�4

10�4 1.17 � 10�4 1.17 � 10�4 1.17 � 10�4

10�5 5.57 � 10�6 1.01 � 10�5 1.09 � 10�5

10�3 6.22 � 10�3 6.21 � 10�3 6.18 � 10�3

10�4 1.26 � 10�4 1.31 � 10�4 9.17 � 10�5

10�3 5.76 � 10�3 5.74 � 10�3 5.74 � 10�3

10�4 1.11 � 10�4 6.75 � 10�5 9.77 � 10�5
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interpolation in ASGC. For this problem, the ASGC estimation bal-
ances computational accuracy and efficiency.

All the above examples assume constant volume fractions of
secondary and tertiary c0 precipitates, and the primary precipitates
are not considered. Next, we take volume fractions of secondary
and tertiary c0 precipitates as sources of uncertainty. The formula-
tion of the current constitutive model adopts volume fractions of
different types of c0 precipitates as explicit parameters. Therefore,
the randomness of c0 can be easily dealt without the assistance
of model reduction. We assume that the volume fractions of the
secondary and tertiary c0 particles follow uniform distributions
Uð0:3;0:5Þ and Uð0:11;0:14Þ, respectively. The volume fractions
are assumed independent from each other as well as from other
features (e.g. texture). The reduced space of texture is chosen to
be 4. Therefore, the total dimensionality of the sampling space will
be 4 + 2 = 6. The PDFs of FIPs computed by both ASGC and MC
based on PCA and Uniform-Legendre PCE are plotted in Fig. 24.
For a level of interpolation 8, 2939 deterministic problems are
solved up in ASGC and 10,000 simulations are conducted in MC.
It is seen that the mean and standard deviation of FIPs are different
from previous examples because of the varying volume fraction of
c0 phase.
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6.3. Convex hull of FIPs

To better understand the extreme values of FIPs and learn the
correlation between them, convex hulls that serve as envelopes
of the values of the FIPs in the presence of uncertainties are con-
structed. From Eqs. (53) and (54), we see that PFS and Pmps are clo-
sely correlated, since the latter is a special situation of the former
(when rmax

n ¼ 0; PFS ¼ Pmps). Therefore, only the 3D visualization of
the convex hulls consisting of Pcyc, Pr and PFS are shown in Fig. 25.
For all the figures, Uniform-Legendre PCs are used to represent the
4-dimensional reduced-order random variables. The points in the
FIP coordinate system are the ones that have been used for the con-
struction of the PDFs. The Q-Hull [46] MatLab package is used to
construct the convex hull.

It is observed that the volume of the convex hulls predicted by
ASGC is greater than the corresponding volume constructed by MC,
while the shapes of the convex hulls are similar (Fig. 25). We also
recall from the marginal PDFs of FIPs (e.g. Figs. 22 and 23) that the
ASGC provides some predictions that are away from the MC predic-
tions but with very low probability (the tails of those PDFs). These
less-probable values are the cause of the wide range of the ob-
tained convex hulls. To better demonstrate and understand this
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phenomenon, we further plot planar convex hulls of two FIPs along
with the sample points and PDFs of each dimension (Fig. 26). The
correspondence of the low probability and the extreme values pre-
dicted by ASGC are clearly captured. (see Fig. 27)

It is seen that most of the data fall within the range where both
ASGC and MC give high probability. Finally, 3D and 2D convex hulls
when volume fractions of secondary and tertiary c0 precipitates are
taken as uncertainty sources are presented. PCA in combination
with Uniform-Legendre PCE is employed. The range and shapes
of the convex hulls are much different from the cases where c0 vol-
ume fractions are taken as constant. (see Fig. 28)
7. Conclusions

In this paper, the effect of multiple sources of uncertainty on
two-phase superalloy microstructure fatigue properties is studied.
A two-phase microstructure is considered as a combination of ran-
dom features consisting of grain size, texture, and volume fraction
of the c0 phase. Given a set of microstructure samples, PCA based
dimensionality reduction techniques are applied to find their
underlining correlations. Both linear and non-linear (kernel) PCA
methods are examined. The reduced-order representations are
mapped to uniform distributions by PC expansion. Adaptive sparse
grid collocation is then introduced to sample new microstructures
from the low-dimensional space. The strain-based fatigue indicator
parameters of superalloy microstructures satisfying given informa-
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Fig. 25. Convex hulls of maximum FIPs constructed by 10,000 samples. The random so
ASGC-PCA; (d) ASGC-KPCA.
tion are computed and their distributions are constructed. The sig-
nificance of different feature effect on FIPs is examined. It is shown
that texture and volume fraction of c0 precipitates are the primary
factors determining FIPs in the problems and data considered. The
model reduction techniques greatly simplified the representation
of random microstructure features, while important characteristics
of microstructures are preserved. Convergence with the dimen-
sionality of the reduced-order variables is shown. Comparisons
with MC results are also provided. The propagation of uncertainty
in microstructure evolution enables one to provide the prediction
on FIPs. The correlation between distributions of FIPs and their
convex hulls are demonstrated. Distributions and convex hulls of
FIPs provide important guidance in materials design, when certain
grain size and texture information is known.

From the numerical examples we found that both PCA and
KPCA provide reasonable predication to distributions of FIPs as
well as their convex hulls. In the current work, however, PCA is
more accurate than KPCA. As discussed earlier, two main reasons
may apply: (1) the variation of initial samples is too small to show
the non-linear nature of the microstructure input data; (2) the
accuracy of the K nearest neighbor pre-imaging strategy adopted
is not good enough to provide precise microstructure reconstruc-
tion; (3) the kernel selected here could not effectively reduce the
non-linearity of the data. ASGC produces consistent predictions
with MC but is computationally more efficient. Furthermore, the
independence assumption of low-dimensional random variables
may also be a source of inaccuracy for all stochastic simulations.
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Fig. 26. 2D convex hull with enclosed sample points obtained by ASGC. Both ASGC and MC distributions corresponding to the chosen FIPs are also plotted to show the
probability of occurrence of specific values. The random source is texture and the reduced dimensionality is 4. (a) Max Pcyc vs. Max PFS when PCA is adopted; (b) Max Pcyc vs.
Max PFS, when KPCA is adopted.
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Fig. 27. Convex hulls of maximum FIPs constructed by 10,000 samples from ASGC. The random sources are texture and volume fractions of secondary and tertiary c0
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In the current stochastic simulation, the modeling of the Ni-
based superalloy microstructure does not take into account the
interaction between grains as the crystal plasticity constitutive
model is implemented using the Taylor approach for the purpose
of efficiency. The predictions can be improved by adopting finite
element (FE) model. However, this approach will be computation-
ally very expensive. The self-consistent (VPSC) [47] approach tak-
ing into account stress compatibility is a potentially alternative
method. Model reduction on realistic microstructures represented
in the form of images is also of interest.
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