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a b s t r a c t

We present a general approach for nonlinear biorthogonal decomposition of random fields. The
mathematical theory is developed based on a fully symmetric operator framework that unifies different
types of expansions and allows for a simple formulation of necessary and sufficient conditions for their
completeness. The key idea of the method relies on an equivalence between nonlinear mappings of
Hilbert spaces and local inner products, i.e. inner products that may be functionals of the random field
being decomposed. This extends previous work on the subject and allows for an effective formulation of
field-dependent and field-independent representations. The proposed new methodology can be applied
in many areas of mathematical physics, for stochastic low-dimensional modelling of partial differential
equations and dimensionality reduction of complex nonlinear phenomena. An application to a transient
stochastic heat conduction problem in a one-dimensional infinite medium is presented and discussed.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Random fields arise in many branches of mathematical physics
including fluid dynamics, electrodynamics, transport theory,
geophysics, quantum field theory and statistical physics. The
general representation theory is rather technical [1–3] and, in a
certain sense, it is closely connected to the representation theory
of nonlinear functionals. Consider, as an example, a field equation
where forcing terms, boundary conditions, physical parameters
and/or initial conditions are set to be random. The solution to
this problem (when it exists) is obviously a random field that can
be conveniently thought of as an output of a nonlinear system
whose input–outputmap is implicitly defined by the field equation
itself. Such a map, which is often referred to as a ‘‘propagator’’ [4],
connects suitable descriptors of the random input processes to
the statistical properties of the solution. Therefore, according to
this viewpoint, the representation of a random field reduces to
the representation of a nonlinear system, i.e. nonlinear functional
representation [5–7].

Historically, the first consistent theory characterizing nonlinear
functionals of stochastic processes is due to Wiener [8] who pio-
neered a complete expansion [9] of any L2-functional of the Brow-
nian motion in terms Hermite polynomials. Subsequently, other
authors extended Wiener’s original ideas to arbitrary functionals
of the Poisson process [10] and to more general independent in-
crement processes [11] by using Itô’s calculus. There were also at-
tempts to construct Wiener–Hermite representations in terms of
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time-dependent bases [12–15], in order to refer the statistical de-
scription of a time-evolving stochastic system to an epoch that is
not continuously escaping in the past (see [16] for a more recent
account and [17] for an interesting alternative representation of
time-evolving random spaces). All these pioneering contributions
revealed a close connection between random input processes and
orthogonal polynomial functionals [18]. However, the mathemati-
cal apparatus required to deal with these types of representations
is rather complex and technical, mainly because of the infinite
dimensionality of the stochastic processes involved. Significant
mathematical simplifications are obtained if it is assumed that
the random field can be represented in terms of a finite—though
eventually large—number of random variables. In these cases, the
functional representation theory reduces to the representation
theory ofmultiparameter functions (see, e.g., [7] p. 13 or [5] p. 579).
Based on this observation, many orthogonal representations of
random fields have been constructed by using the standard theory
of Hilbert spaces. Well known examples are generalized polyno-
mial chaos [19–21] and Karhunen–Loève expansions.

The purpose of this paper is to develop a nonlinear extension of
the biorthogonal decomposition method [22,23] that relies on an
equivalence between nonlinear mappings of Hilbert spaces and lo-
cal inner products, i.e. inner products that may be functionals of the
random field being decomposed. This generalizes previous work
on the subject [24–28] and yields a new methodology that can
be employed in many areas of mathematical physics, for stochas-
tic low-dimensional modelling of partial differential equations
and dimensionality reduction of complex nonlinear phenomena.
Following Aubry et al. [26,22,23], we will develop this decom-
position theory based on a general operator framework that
unifies different types of expansions and allows for a simple
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formulation of necessary and sufficient conditions for their com-
pleteness. As we will see, the apparent simplicity of this oper-
atorial approach has its roots in the powerful theory of linear
transformations acting on Hilbert spaces. Both field-dependent
and field-independent representations will be discussed, with
particular emphasis on field-dependent Galerkin modelling of
stochastic partial differential equations. This is an attractive
area of research. Indeed, several biorthogonal expansions have
been recently proposed for low-dimensional modelling of incom-
pressible random viscous flows [24,25] (see also [29]), thus ex-
tending the standard Galerkin framework [30–33] for stochastic
variations of boundary conditions and other types of uncertain-
ties. All these approaches will be essentially unified in the present
paper. In this broader context we will see that, in principle, our
theory allows us to construct reduced-order models of stochastic
input processes and field equations having minimal dimensional-
ity. This is of great interest in many areas of mathematical physics,
e.g., when a reduced-order model is employed for control or opti-
mization purposes [34,35], or for generating data-driven stochastic
input models [36].

This paper is organized as follows. In Section 2 we develop the
mathematical theory for a nonlinear biorthogonal decomposition
of random fields. In Section 3we discuss field-dependent and field-
independent representations including generalized polynomial
chaos [19,20], generalized spectral expansions [37] and proper
generalized decompositions [38,39]. In Section 4 we present an
application of the developed theory to a time-dependent stochastic
heat conduction problem. Finally, the main findings and their
implications are summarized in Section 5. We also include a
brief Appendix where we recall some fundamental results of the
spectral theory for symmetric operators acting on Hilbert spaces.

2. Nonlinear biorthogonal decomposition of random fields
being functionals of a finite number of random variables

Let us introduce a suitable mathematical setting to study
decomposition theories of continuous random fields that can be
represented in terms of a finite—though eventually large—number
of random variables.1 To this end, let (Ω, S, P) be a complete
probability space, where Ω denotes the set of outcomes, S is the
minimal σ -algebra of the subsets of Ω and P : S → [0, 1] is
the applicable probability measure. On this probability space we
consider a finite-dimensional real random vector

ξ : Ω → Rn

ω → ξ (ω)
def
= (ξ1 (ω) , . . . , ξn (ω))

(1)

characterizing the input uncertainties of the system. These are
assumed to be statistically known. For any Borel function f
depending on ξ , the expected value is defined as

⟨f ⟩ def
=

∫
Ω

f (ξ (ω)) dP (ω) =

∫
Rn

f (x)dµξ (x), (2)

where µξ (x) is the distribution measure of (1), i.e.

µξ (B)
def
= P


ξ−1 (B)


, (3)

for any Borel set B ⊆ Rn. We denote by Σ = ξ (Ω) the range
space of ξ and we assume that it is a bounded subset of Rn. Ifµξ is

1 As we have already seen, the choice to rely on a finite-dimensional random
space avoids many technical difficulties and, at the same time, encompasses most
practical applications.
absolutely continuous with respect to the Lebesgue measure then
there exist a probability density functionw : Σ → R+, such that

⟨f ⟩ =

∫
Σ

f (ξ)w (ξ) dΣ, (4)

where dΣ def
= dξ1 · · · dξn.

A continuous scalar random field in a space–time domain is
represented as a function

u : X × T ×Ω → R, (5)

where X ⊆ Rd (d = 1, 2, 3) denotes the spatial domain, T ⊆ R
is the temporal domain andΩ is the sample space. If we consider
u(x, t;ω) as an output of a certain nonlinear system, e.g., defined
implicitly by a field equation, whose uncertainties are represented
in terms of the finite-dimensional random vector (1), then in
view of the Doob–Dynkin lemma (see, e.g., [40] p. 8 or [41] p. 7),
u(x, t;ω) can be entirely described in terms of the same set of
random variables, i.e. we have the identity

u (x, t;ω) ≡ u (x, t; ξ (ω)) . (6)

This fundamental result allows us to represent a random field as a
parametric field in a Hilbert space H (X × T ×Σ).

If H is separable, i.e. if it admits a countable orthonormal basis,
then it can be obviously represented as tensor product of two
Hilbert spaces H1 and H2 [42, p. 51] as2

H ≃ H1 ⊗ H2, (7)

where the symbol ‘‘≃’’ means isomorphic. Possible choices of
H,H1 and H2 are

L2 (X × T ×Σ) ≃ L2 (X × T )⊗ L2 (Σ) , (8)

≃ L2(T )⊗ L2 (X ×Σ) , (9)

≃ L2 (T ×Σ)⊗ L2(X). (10)

These three different possibilities correspond to three different
types of expansions first investigated by Venturi et al. [24]
(form (9)) and Mathelin et al. [25] (form (10)). Generalized
polynomial chaos [19,20] and generalized spectral expansions [37]
are representations of type (8). We remark that other choices for
H1 and H2 may be based on Sobolev spaces W k,2 [46, p. 40].

A representation of the random field (6) in the tensor product
space (7) takes the general form

u =

∞−
i,j=1

aijφiψj, φi ∈ H1, ψj ∈ H2, (11)

where φi and ψj are orthonormal3 basis functions of H1 and
H2, respectively. According to a theorem of Schmidt [47], any
representation of a tensor product of twoHilbert spaces is unitarily
equivalent to a diagonal representation [48, p. 118]. This means
that we can transform (11) into the equivalent expansion

u =

∞−
k=1

µkΦkΨk, Φk ∈ H1, Ψk ∈ H2 (12)

bymeans of unitary transformations inH1 andH2.We remark that
such a diagonalization procedure cannot be extended, in general,
to tensor products involving more than two Hilbert spaces. For

2 Let us recall that a separable Hilbert space is necessarily isomorphic with the
Lebesgue space L2 [43, p. 55]. For a rigorous definition of tensor products of Hilbert
spaces see also [42] p. 51, [44] p. 27 or [45] p. 91.
3 Orthonormality is clearly relative to specific choices of inner products inH1 and

H2 (see the subsequent Section 2.1).
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instance, ifH ≃ H1 ⊗H2 ⊗H3 is a tensor product of three Hilbert
spaces, then

u =

∞−
i,j,k=1

cijkφiψjηk, (13)

where φi ∈ H1, ψj ∈ H2 and ηk ∈ H3, cannot be reduced to a
triorthogonal expansion (see, e.g., [49,48,50]).

2.1. Local inner products

Let us introduce the notion of local inner product on H1 and
H2, which is at the basis of the nonlinear decomposition technique
developed in the paper. To this end we first consider the following
two local bilinear forms4 [51, p. 202]

{·, ·}u : H1 × H1 → R, (14)
(·, ·)u : H2 × H2 → R, (15)

where the subscripts ‘‘u’’ in both (14) and (15) emphasize the
fact that such forms depend also and possibly in a nonlinear way
on the random field u. We will also assume that (14) and (15)
are nondegenerate and satisfy the requirements of symmetry and
positive definiteness, i.e. they define two local inner products in H1
and H2, respectively. They key observation for the development of
a nonlinear decomposition theory is that a local bilinear form can
be reduced to a standard bilinear form operating on transformed
fields, i.e. there exist two linear operators

Au : H1 → H1 and Bu : H2 → H2, (16)

depending nonlinearly on u, such that

{φ1, φ2}u = {Auφ1, φ2}, ∀φ1, φ2 ∈ H1, (17)
(ψ1, ψ2)u = (Buψ1, ψ2), ∀ψ1, ψ2 ∈ H2, (18)

where at the right hand side there are global (eventually standard)
inner products. This result is known as the first representation
theorem [52, p. 322] and, as pointed out by Tonti [53] p. 1352, it
is a rather general fact, i.e. the change in a bilinear functional is
equivalent to a premultiplication by an operator. Moreover, the
requirement that {·, ·}u and (·, ·)u are inner products implies that
Au and Bu are also bounded, symmetric and positive.

As an example, consider the following inner product (Einstein’s
summation convention on repeated indices is assumed)

(p, q) def
=

∫
X
gij(x)pi(x)qj(x)dX (19)

inducing a norm in the space of vector fields represented in a
curvilinear coordinate system [54] with metric gij(x). If we assume
that gij is a possibly nonlinear functional of a field u(x), then

(p, q)u
def
=

∫
X
gij (x; u) pi(x)qj(x)dX (20)

defines a local inner product, which is nondegenerate only if
gij (x; u) is nonsingular. A physical example may be the Lagrangian
coordinate system of fluid mechanics where the metric field
depends on the velocity that solves, e.g., the Navier–Stokes
equations. It is clear that (20) can be reduced to a standard inner
product by considering the following trivial linear operator

Bup
def
= gij (x; u) pi(x). (21)

4 We recall that a local bilinear formonH1 is amapwhich attempts to correspond
with every tern of vectors φ1, φ2 ∈ H1 and u ∈ H a real number {φ1, φ2}u in a
bilinear way in φ1 and φ2 .
This yields

(p, q)u = (Bup, q) = (p, Buq) . (22)

We remark that local bilinear forms can also be defined in terms
of operators associated with partial differential equations in a
very similar way to the one used in the formulation of action
functionals for non-potential operators [55,53,56,57]. Indeed, this
type of approach has been recently adopted by Nouy et al. [37] for
the construction of equation-dependent spectral representations
of the random space. We will return to this important point in the
subsequent Section 3.1.

2.2. The operators U,UĎ and their spectral representation

It is convenient to develop the biorthogonal decomposition
theory based on a general operator framework that unifies
different types of expansions and allows for a simple formulation
of necessary and sufficient conditions for their completeness. To
this end, following Aubry et al. [26,22,23], we define the following
linear operator

U : H1 → H2 (23)

such that

∀φ ∈ H1 Uφ def
= {u, φ}u , (24)

where {·, ·}u denotes a local inner product in H1. By using Eq. (17),
we can transform (24) as

Uφ = {u, Auφ} =

Au ⊗ IH2u, φ


, (25)

where {, } is a global (eventually standard) inner product inH1 and
IH2 denotes the identity transformation inH2. In this paperwewill
always assume that U is compact5 ([52] p. 260, [43] p. 172, [42]
p. 198). The tensor product operator Au ⊗ IH2 defines the following
nonlinear mapping from H into H

g1(u)
def
= Au ⊗ IH2u. (26)

This transformation can be obviously represented in H1 ⊗ H2 as
(see Eq. (11))

g1(u) =

∞−
i,j=1

aijAuφiψj. (27)

The adjoint of U in the sense of operators acting between
different Hilbert spaces (having different local inner products)
satisfies (e.g., [59] p. 133)

(ψ,Uφ)u = {UĎψ, φ}u, ∀φ ∈ H1, ∀ψ ∈ H2. (28)

This implies thatUĎ is a linear operator fromH2 intoH1 [52, p. 256]

UĎ
: H2 → H1 (29)

such that

∀ψ ∈ H2, UĎψ
def
= (u, ψ)u . (30)

By using Eq. (18), we can transform (30) as

UĎφ = (u, Buψ) =

IH1 ⊗ Buu, ψ


, (31)

where (·, ·) is a global inner product in H2 and IH1 denotes the
identity transformation in H1. Similarly to Eq. (26), the tensor

5 Generalizations to non-compact operators are useful and sometimes of primary
importance. For instance, U may be unbounded and may have a continuous
spectrum. The latter situation is discussed by Aubry et al. [58] in the context of
turbulent flows.
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product operator IH1 ⊗Bu defines the following nonlinearmapping
from H into H

g2(u)
def
= IH1 ⊗ Buu, (32)

which can be represented in H1 ⊗ H2 as

g2(u) =

∞−
i,j=1

aijφiBuψj. (33)

Now, the spectral decomposition of the compact operator U
yields a representation of the random field u in the form (see [52]
p. 261 or [22] p. 690)

u =

∞−
i=1

µiΦiΨi, Φi ∈ H1, Ψi ∈ H2, (34)

where the basis functionsΦi andΨi are locally orthonormal in their
respective spaces, i.e. they satisfy

{Φi,Φj}u = (Ψi,Ψj)u = δij. (35)

From Eqs. (34) and (35) we obtain the so-called dispersion relations

UΦk = µkΨk, (36)

UĎΨk = µkΦk, (37)

coupling locally orthogonal sets of modes in H1 to those in H2. By
applying UĎ to (36) and U to (37) we finally obtain the eigenvalue
problems

UĎUΦk = µ2
kΦk, (38)

UUĎΨk = µ2
kΨk. (39)

We notice that the operators UUĎ and UĎU are compact,6 symmet-
ric and positive and they admit the following representation

UĎUΦk = {kUĎU ,Φk}u , (40)

UUĎΨk = (kUUĎ ,Ψk)u , (41)

where the kernel functions kUĎU and kUUĎ are easily obtained as

kUĎU
def
=


u, u′


u =

∞−
k=1

µ2
kΦkΦ

′

k, (42)

kUUĎ
def
= {u, u′

}u =

∞−
k=1

µ2
kΨkΨ

′

k . (43)

The apex notation denotes evaluation at a different point for those
variables that are not integrated out by the inner products. For
instance, if H2 ≡ H2(T ) then the kernel (43) is

kUUĎ(t, t ′) =

u(x, t; ξ), u(x, t ′; ξ)


u =

∞−
k=1

µ2
kΨk(t)Ψk(t ′). (44)

In order to compute a nonlinear biorthogonal expansion of a
random field u, we need to solve simultaneously (36) and (37).
This problem is not equivalent to the solution of the eigenvalue
problems (38) and (39) since the dispersion relations Φk ↔

Ψk may be lost. Indeed a solution to (36)–(37) is a solution to
(38)–(39), but the converse is not necessarily true. Therefore, it
is a common practice to solve one eigenvalue problem (either
(38) or (39) and then use one dispersion relation to compute the
other basis. It is useful to remark that the eigenfunctions of UUĎ

and UĎU define locally orthonormal bases of N(U)⊥ and N(UĎ)⊥,

6 We recall that if U is compact then UĎ is compact and so are the operator
products UUĎ and UĎU (see, e.g., [52] pp. 158–159).
respectively, whereN denotes the null space of an operator and the
symbol ‘‘⊥’’ indicates the orthogonal complement [52, p. 252]. This
means that, in general, these spectral bases will not be complete
in H1 and H2. (See Appendix for further details). However, in the
context of the representation of a specific random field u, the null
space of the field-dependent operator U is not required since it
does not obviously contribute to the representation of u.

2.3. The equivalence between local inner products and nonlinear
mappings

From what has been said, it is clear that we can effectively
determine a biorthogonal expansion of a random field in terms
of locally orthogonal modes provided we select two local inner
products in H1 and H2. This is equivalent to choosing two
bounded, symmetric and positive linear operators Au and Bu
acting on H1 and H2, respectively. In this section we would
like show that a decomposition of a random field based on local
inner products can be equivalently seen as a decomposition of a
nonlinearly mapped field with respect to standard inner products.
To this end let us first apply the so-called second representation
theorem [52, p. 331] to (17) and (18)

{φ1, φ2}u = {A1/2
u φ1, A1/2

u φ2}, ∀φ1, φ2 ∈ H1, (45)

(ψ1, ψ2)u = (B1/2
u ψ1, B1/2

u ψ2), ∀ψ1, ψ2 ∈ H2, (46)

where A1/2
u and B1/2

u denote the (unique) square root operators
corresponding to Au and Bu, respectively.7 The second representa-
tion theorem allows us to transform effectively locally orthogonal
modesΦk andΨk into globally orthogonal ones Φk and Ψk through
the mappings

Φk
def
= A1/2

u Φk, (47)Ψk
def
= B1/2

u Ψk. (48)

In fact, from (35) and (45)–(48) it easily follows that

{Φi,Φj}u = {Φi,Φj} = δij, (49)

(Ψi,Ψj)u = (Ψi,Ψj) = δij. (50)

Nowwe can transform the biorthogonal expansion (34) in terms of
globally orthogonal modes. To this end we simply apply the tensor
product operator A1/2

u ⊗ B1/2
u to (34), to obtain the following new

field

g(u) def
=

∞−
k=1

µkA1/2
u ΦkB1/2

u Ψk =

∞−
k=1

µkΦkΨk, (51)

where g is a nonlinear mapping from H into H defined as

g : H → H

u → g(u) def
= A1/2

u ⊗ B1/2
u u.

(52)

Obviously, the nonlinearity of themapping g is due to thenonlinear
functional dependence of the linear operators A1/2

u and B1/2
u on u.

From (49)–(51) we obtain the following dispersion relations in
terms of globally orthogonal modes and standard inner products

{g(u),Φk} = µkΨk, (53)

(g(u),Ψk) = µkΦk. (54)

7 Since the operators Au and Bu are symmetric and positive they have a well
defined unique symmetric square root [52, p. 281].
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At this point it is convenient to define two operators G : H1 → H2
and GĎ

: H2 → H1 such that

Gφ def
= {g(u), φ}, GĎψ

def
= (g(u), ψ). (55)

This allows us to write (53) and (54) in the operatorial form

GΦk = µkΨk, (56)

GĎΨk = µkΦk. (57)

A comparison between (56)–(57) and (36)–(37) shows that G and
U are related by the following operatorial identities

GA1/2
u = B1/2

u U, GĎB1/2
u = A1/2

u UĎ. (58)

From (56) and (57) we also see that Φk and Ψk are eigenfunctions
of the symmetric eigenvalue problems

GĎGΦk = {kGĎG,Φk} = µ2
k
Φk, (59)

GGĎΨk = (kGGĎ ,Ψk) = µ2
k
Ψk, (60)

where the kernel functions kGĎG and kGGĎ are

kGĎG
def
=


g(u), g(u)′


=

∞−
k=1

µ2
k
ΦkΦ ′

k, (61)

kGGĎ
def
= {g(u), g(u)′} =

∞−
k=1

µ2
k
ΨkΨ ′

k . (62)

Again, the apex notation here denotes evaluation at a different
point for those variables that are not integrated out by the inner
products (for an example, see Eq. (44)). Thus, a decomposition of a
random field u based on local inner products can be equivalently
seen as a decomposition of a nonlinearly mapped field g(u) with
respect to standard inner products. Is the converse statement true?
In otherwords, if we arbitrarily select a nonlinearmapping fromH

into H , will we be able determine two symmetric operators A1/2
u

and B1/2
u defining two local inner products in H1 and H2 and such

that (51) is satisfied? Unfortunately, the answer to this question
is negative. In fact, there exist even linear transformations from
H into H that cannot be represented in terms of tensor product
operators. This means that we only have a partial equivalence
between local inner products andnonlinearmappings. However, in
the particular case where the operators A1/2

u and B1/2
u are invertible

then the mapping g(u) is invertible as well and there is a one-to-
one correspondence between the operators U and G (see Eq. (58)).
This implies that locally and globally orthogonal modes are in a
one-to-one correspondence as well (see Eq. (47)–(48)).

2.4. An illustrative example

Let us assume that the Hilbert spaces H1 and H2 appearing in
the tensor product (7) are

H1 = L2 (X ×Σ) , (63)

H2 = L2(T ). (64)

According to this choice, the random field u is represented
as a superimposition of random spatial modes modulated by
deterministic temporal modes, i.e.

u (x, t; ξ) =

∞−
k=1

µkΨk(t)Φk (x; ξ) . (65)

This type of expansion has been studied by Venturi et al. [24] in
the context of stochastic low-dimensional modelling of random
fluid flows. In order to set up a nonlinear decomposition theory we
need define two local inner products or, equivalently, two bounded
symmetric transformations in H1 and H2. In this illustrative
example we will examine the following simple choices

A1/2
u φ = A1/2

u (x; ξ) φ (x; ξ) , (66)

B1/2
u ψ = B1/2

u (t)ψ(t), (67)

where A
1/2
u (x; ξ) and B

1/2
u (t) are real positive measures that

are possibly nonlinear functionals of u. The associated local inner
products are explicitly obtained as

{φ1, φ2}u
def
=

∫
X
⟨φ1(x; ξ)φ2(x; ξ)Au(x; ξ)⟩dX, (68)

(ψ1, ψ2)u
def
=

∫
T
ψ1(t)ψ2(t)Bu(t)dt. (69)

Correspondingly, the operators U and UĎ (Eqs. (25) and (31)) are

Uφ =

∫
X
⟨u (x, t; ξ) φ (x; ξ)Au (x; ξ)⟩dX, (70)

UĎψ =

∫
T
u (x, t; ξ) ψ (x, t)Bu(t)dt. (71)

This yields the following operator product

UUĎψ =

∫
T

∫
X
⟨u (x, t; ξ) u


x, t ′; ξ


× Au (x; ξ)⟩Bu(t ′)ψ(t ′)dXdt ′

whose eigenfunctions Ψj are locally orthonormal with respect to
(69), i.e.

(Ψk,Ψj)u = δkj. (72)

Once the modes Ψj are available, we can easily determine the
corresponding modesΦk through the dispersion relation

Φk (x; ξ) =
1
µk

∫
T
u (x, t; ξ)Ψk(t)Bu(t)dt. (73)

This completes the computation of the biorthogonal decomposi-
tion of u in terms of locally orthogonal modes Ψj andΦk. Next, we
examine the relation between local inner products and nonlinear
mappings discussed in the previous subsection. To this end let us
first notice that in this particular example the transformations A1/2

u

and B1/2
u defined in (66) and (67) are invertible and their inverses

are

A−1/2
u φ =

φ (x; ξ)

A
1/2
u (x; ξ)

, B−1/2
u ψ =

ψ(t)

B
1/2
u (t)

. (74)

Therefore, we have a one-to-one correspondence between decom-
position theories based on local inner products and decomposition
theories based on the following nonlinearly mapped field

g(u) (x, t; ξ) def
= A1/2

u (x; ξ)B1/2
u (t)u (x, t; ξ) (75)

with respect to standard inner products. This correspondence
can be easily checked by a direct calculation. For instance, the
dispersion relation

UΦk =

∫
X
⟨uΦkAu⟩dX = µkΨk, (76)

can be equivalently written in the form (56) as

GΦk =

∫
X
⟨g(u)Φk⟩dX = µkΨk, (77)
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whereΦk (x; ξ) = A1/2
u (x; ξ)Φk (x; ξ) , (78)Ψk(t) = B1/2

u (t)Ψk(t), (79)

are globally orthogonal modes. We will see in Section 4.1 that
suitable choices of field-dependent integration measures Au and
Bu could yield to biorthogonal representations converging faster
than the classical stochastic proper orthogonal decomposition [24],
which is obtained for Au = 1 and Bu = 1 in the present example.
The high convergence rate will be obviously in the new metric
associated with the integration measures Au and Bu.

3. Field-dependent and field-independent decomposition the-
ories

Field-dependent decomposition theories are based on random
fields whose representation is already known, for instance in a
polynomial chaos [60,19,20] or in a biorthogonal wavelet [61]
basis. When we deal with field-dependent decompositions we
are usually working simultaneously in both Hilbert spaces H1
and H2. In these cases we look for another representation of
the random field satisfying various types of requirements. For
example, several biorthogonal expansions converging optimally
in the mean, in the second order moment and in the standard
deviation sense have been recently proposed for low-dimensional
modelling of random incompressible flows [24] and robust control
of cylinder wakes [25]. These new approaches extend the standard
Galerkin framework [30–33] for stochastic variations of boundary
conditions and other types of uncertainties.

In a field-independent decomposition theory we are looking
for a complete representation of either H1 or H2 by using infor-
mation that are not dependent on any particular field. Therefore
field-independent methods are well suited, e.g., for the represen-
tation of unknown solutions to stochastic field equations where
physical parameters, boundary conditions, geometry and initial
conditions are set to be random [62–64,24]. One of the most fa-
mous and widely employed type of field-independent represen-
tation is the generalized polynomial chaos expansion [19–21].
More recent approaches are based on high dimensional model
representations [65,66], sparse grid adaptive stochastic colloca-
tion [67], generalized spectral decompositions [37,68] and proper
generalized decompositions [38,39].

3.1. Orthogonal representations of random space

In this subsection we would like to discuss several alternatives
to field-independent orthogonal representation of random space
based on the spectral theory for symmetric operators. This topic
lies somewhat out the paper’s main line of development, but we
would like to discuss it for completeness, especially in connection
with recent results on reduced basis approximation of partial
differential equations. To this end let us consider the tensor
product space H1 (Σ)⊗ H2 (X × T ) and look for an expansion of
a random field in the form

u (x, t; ξ) =

∞−
k=1

uk (x, t)Γk (ξ) , (80)

where Γk (ξ) is an orthonormal basis of H1 while uk are, in
general, not-orthogonal space–time modes belonging to H2. The
development (80) is based on the original ideas of Wiener [8],
who pioneered a complete polynomial expansion [9,69] of any
L2 functional of the Brownian motion process.8 In the context of
spectral theory for symmetric operators, the basis functions Γk
appearing in (80) can be obtained from the eigenvalue problem

{K,Γk} = γkΓk, (81)

where K

ξ, ξ ′


is a suitable symmetric kernel function. For

example, if H1(Σ) = L2(Σ) then (81) takes the following explicit
form∫
Σ

K

ξ, ξ ′


Γk


ξ ′


w


ξ ′


dξ ′

= γkΓk (ξ) , (82)

where w(ξ) denotes the probability density function of the
random input vector (1). It is interesting to note that multi-
dimensional representations of a random space can be obtained
directly from (81) or (82) without resorting to tensor products
of one-dimensional bases. Indeed, given the kernel K the
problem defined in (82) can also be seen as a multi-dimensional
generalization of the singular value decompositionwhich has been
extensively studied in the literature in the finite dimensional case
(see, e.g., [71,72] and the reference therein). In that context it
has been found that the construction of an optimal (separated)
multi-dimensional basis Γk(ξ) for a given tensor is not trivial
and sometimes it is even an ill-posed problem [73,74]. Various
algorithms have been recently proposed for the identification of
tensor eigenfunctions (see, e.g., [75] and the references therein).

Obviously, the choice of the kernel and the bilinear form in
(81) are fundamental in order to obtain a complete9 and rapidly
convergent expansion. A very important question therefore is
how to select them a priori, i.e., without prior knowledge of the
random field. Unfortunately, a general answer to this question
is still lacking. Indeed, recent research activity of Nouy [76] (see
also [37]) has focused in obtaining spectral expansions based
on the weak formulation of the stochastic field equation itself
rather than on its solution. In other words, he proposed an
equation-dependent decomposition method for the resolution of
stochastic problems that do not require prior knowledge of the
random field. Other types of equation-dependent (separated)
representations have been recently proposed for modelling high-
dimensional physical phenomena. For instance, the so-called
proper generalized decomposition [38] constitute an appealing
technique for reducing drastically the number of degrees of
freedom that functional approximations to stochastic partial
differential equations involve [39].

We would like to remark that the generalized spectral
decomposition approach resembles in several aspects a nonlinear
biorthogonal decomposition method. In particular, it results in
a nonlinear eigen-like problem for the basis functions through
two dispersion-like relations (see Eqs. (9)–(12) of Nouy and
Le Maître [37]). There are also several fundamental differences
between the two methods which we would like to discuss
hereafter. In the present work, a separated representation of a
random field in a tensor product Hilbert space is searched such

8 As it is well known, Brownian motion can be represented in terms of an
infinite number of independent Gaussian random variables. This fact induced
several researches to apply polynomial chaos expansions to finite dimensional
random fields by using the statistical independence hypothesis as a fundamental
requirement. However, this hypothesis is no longer needed in the case of finite
dimensional random spaces. Indeed, polynomial chaos expansions for arbitrarily
correlated random inputs were already proposed by Soize and Ghanem [70].
9 In order for the representation to be complete, the null space of the operator

defined at the left hand side of Eq. (81) has to be empty (see Appendix for further
details). Moreover, every complete representation of H1 based on the eigenvalue
problem (81) is unitarily equivalent to any other complete representation, i.e. there
exists a suitable rotation of the function space that carries one representation into
the other.
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that it is optimal with respect to a metric which has a separation
property. In [76,37] the metric is based on the weak form of the
underlying field equation that describes the system and, in general,
such a metric does not have a separation property. This is because
the weak formulation of a nonlinear equation basically yields to
semilinear forms instead of bilinear ones. Therefore the generalized
spectral decomposition method in general leads to a non-
classical (pseudo) eigenproblem whose mathematical framework
is unfortunately still not well developed. When the metric arising
from the generalized spectral decomposition method degenerates
into a classical tensor product metric then the generalized spectral
decomposition is equivalent to an orthogonal expansion with
respect to two local inner products in Hilbert spaces.

Equation-dependent bilinear forms occupy a place of peculiar
significance also in variational methods for non-potential opera-
tors [56]. For example, it has been shown by Magri [55] that every
linear equation admits an action functional if the bilinear form is
defined in terms of the linear operator associated with the equa-
tion itself. This has been subsequently extended by Tonti [53] to
arbitrary nonlinear problems by considering bilinear forms defined
in terms of Gâteaux derivatives [51,57]. Further research along
this direction, i.e. spectral expansions generated through equation-
dependent bilinear forms, could lead to breakthroughs in the rep-
resentation theory of solutions to stochastic nonlinear problems.

3.2. Stochastic low-dimensional modelling of PDEs based on field-
dependent orthogonal decompositions

Stochastic low-dimensional modelling of partial differential
equations based on field-dependent decompositions is an attrac-
tive area of research. Themain objective is to construct reduced or-
der dynamical systems of manageable computational complexity
to be employed, e.g., for control or optimization purposes [34,35].
Among different stochastic modelling techniques, Galerkin ap-
proaches are largely employed because of their versatility and ease
of implementation. Dynamical equations are usually projected into
a suitable set of orthogonal modes whose convergence rate plays
a fundamental role in obtaining low-dimensional models that can
be rapidly integrated. This explains why the majority of existing
field-dependent methods rely on Karhunen–Loève expansions.

However, more efficient alternatives can be developed within
the nonlinear biorthogonal framework. Indeed, for a given random
field each reasonable choice of a field-dependent norm yields to
different spectral expansions having different convergence rates,
which are optimal in the metric associated with the chosen
norm. The important question at this point is: what is the desired
metric? This is equivalent to ask: how do we select the field-
dependent operators Au and Bu for the representation a given
random field or for the Galerkin decomposition of a specific
stochastic partial differential equation? Clearly, it is not easy to
provide a general answer to this question since it is problem-
dependent. For instance, in the context of data-driven stochastic
input model generation [36], a useful metric may be learned
from experimentalmeasurements throughwell known techniques
such as kernel principal component analysis10 [77,78]. For other
types of problems, e.g. low-dimensional Galerkin modelling of
stochastic partial differential equations, the definition of a useful
field-dependent metric may be not a trivial task.

Hereafter, we briefly outline a simple criterion to construct
field-dependent operators Au and Bu based on the minimization of
the following complementary energy functional

FM [Au, Bu]
def
=

Ec(M)
E(∞)

, (83)

10 The ‘‘feature space’’ in this case is defined by the mapping g(u) of Section 2.3.
where E(M) and Ec(M) denote, respectively, the representation
energy withM modes and its complementary, i.e.

E(M) def
=

M−
k=1

µ2
k [Au, Bu] , Ec(M)

def
=

∞−
k=M+1

µ2
k [Au, Bu] . (84)

In Eq. (84)we have emphasized the fact that the eigenvaluesµ2
k are

considered as scalar functions of twooperatorsAu andBu [52, p. 44].
Also, the quantity E (∞) coincides with the trace of UUĎ (or UĎU)
and it can be conveniently calculated as a function of its kernel,
i.e. without computing the whole spectrum (see, e.g., [29] Section
3.3). This allows us to rewrite the functional (83) in the following
alternative form

FM [Au, Bu] = 1 −
E(M)

tr (UUĎ)
. (85)

The advantage of this formulation relies on the fact that the
calculation of low-order functionals, e.g., F1 and F2, requires only
the first few largest eigenvalues. These can be computed efficiently
even for large-dimensional problems by employing parallel
eigenvalue solvers based on the Arnoldi method. Minimization of
(85) for a prescribedM yields to the identification of two operators
Au and Bu and associated field-dependent inner products inH1 and
H2 (see Eqs. (45) and (46)).

The basic idea behind the minimization of the complementary
energy functional (85) is to look for field-dependent norms that
maximize the representation energy of the random field for a
selected number of expansion terms, i.e. try to inject as much
energy as possible into the first few modes. This results in a
series expansion that will be optimally convergent in the sense
of these norms. At this point it is important to remark that
when we deal with functionals of the random field, such as the
second order moment or even more general nonlinear functionals
(e.g. the residual of a stochastic partial differential equation), we
have no guarantee that an expansion based on a specific field-
dependent norm will be also optimal for the representation of
the given functional. This is the case, for example, of the second
order moment for which the standard Karhunen–Loève expansion
provides the best convergence rate. Therefore, choosing a metric
that minimizes the complementary energy functional may be not
always a pertinent choice since it could lead to poor convergences
with respect to other useful metrics.

4. An application to time-dependent stochastic heat conduc-
tion in a one-dimensional infinite medium

In this section we present a simple application of the nonlinear
biorthogonal technique to a time-dependent stochastic heat
conduction problem in a one-dimensional infinite medium. The
main purpose of this application is provide a clear exposition
of the theoretical apparatus developed in the paper rather
than attempting to tackle complex problems. The field equation
describing the physical phenomenon is

∂u
∂t

= α
∂2u
∂x2

, (86)

where u(x, t) is the temperature field and α denotes the thermal
diffusivity [79, p. 28]. For a given initial condition u (x, 0) the
analytical solution to (86) can be represented as [80, p. 227]

u (x, t) =

∫
∞

−∞

Gα

x, t|x′, 0


u


x′, 0


dx′, (87)

where the Green function Gα is

Gα

x, t|x′, t ′

 def
=

1
[4πα (t − t ′)]1/2

exp


−


x − x′

2
4α (t − t ′)


. (88)
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Fig. 1. Mean (top) and standard deviation (bottom) of the random temperature
field corresponding to a random thermal diffusivity following a uniform probability
distribution with mean ⟨α⟩ = 16.56 × 10−5 m2/s and standard deviation
approximately 17%⟨α⟩.

The subscript ‘‘α’’ in Gα reminds us that this function depends also
on the thermal diffusivity. The integral representation (87) allows
us to determine the temperature transient corresponding to any
initial condition. In particular, the response of the system to a set
of N Dirac impulses in the form

u (x, 0) = u0 +

N−
j=1

δ(x − lj) (89)

is easily obtained as

u (x, t) = u0 +

N−
j=1

Gα

x, t|lj, 0


, x ∈ R, t ≥ 0. (90)

In order to completely define the prototype heat conduction
problem, we extract the following space–time subdomains

X def
= [−1, 1] m, T def

= [1, 200] s (91)

and we consider N = 3 equally spaced Dirac impulses located at

lj = −1 +
j
2

[m] , j = 1, . . . , 3. (92)

Also, we set u0 = 293 K in Eqs. (89) and (90).
Next, we assume that the thermal diffusivity of themedium can

be modelled as a random variable in the form

α (ξ)
def
= ⟨α⟩ (1 + σξ) , σ = 0.3, (93)

where ⟨α⟩ = 16.56 × 10−5 m2/s and ξ follows a uniform
probability distribution in [−1, 1]. The selected mean thermal
diffusivity corresponds to pure silver [79, p. 28]. Note also that the
standarddeviation ofα is approximately11 17%⟨α⟩. The uncertainty
in α induces a random Green function (88) and, correspondingly,
a random temperature field, which is denoted as u (x, t; ξ) in
agreement with previous notation. In Fig. 1 we show the mean
and the standard deviation of such a temperature field in the
space–time domain of interest.

4.1. Nonlinear biorthogonal expansions based on field-dependent
integration measures

In order to determine a nonlinear biorthogonal decomposition
of the random temperature we consider the following class of local
inner products

{φ1, φ2}u
def
=

∫
Σ

φ1 (ξ) φ2 (ξ)Au (ξ) dξ, (94)

(ψ1, ψ2)u
def
=

∫
X

∫
T
ψ1 (x, t) ψ2 (x, t)Bu (x, t) dxdt, (95)

whereAu (ξ) andBu (x, t) are two continuous positive integration
measures depending nonlinearly on u.12In this framework, every
biorthogonal expansion of the random temperature

u (x, t; ξ) = u0 +

∞−
k=1

µkΨk (x, t)Φk (ξ) (96)

is in a direct correspondence with a specific choice of Au and
Bu. For instance, the standard Karhunen–Loève decomposition is
obtained by selecting

Au (ξ) = w(ξ) and Bu (x, t) = 1, (97)

where w(ξ) = 1/2 is the uniform probability density of the
random input variable ξ (Eq. (93)). At this point the question is:
how do we select the integration measures Au and Bu? We have
seen that a possible criterion is to maximize the representation
energy for a prescribed number of modes, i.e. minimize the
complementary energy functional defined in Eq. (85). As pointed
out at the end of Section 3.2, thismay not necessarily be a pertinent
choice since it could lead to poor convergences when representing
other useful functionals of the random field, such as the second
order moment.

The minimization of the complementary energy can be done
analytically,13 provided one has available an analytical expression
for the first few eigenvalues ofUUĎ orUĎU , or numerically, through
constrained iterative minimization algorithms. Here we follow the
latter approach. To this end we employ (97) as a starting point
for the optimization procedure and we minimize FM [Au,Bu]
iteratively until a prescribed tolerance is achieved. The results
of the minimization are shown in Fig. 2, where we plot the
normalized spectrum

ek
def
=

µ2
k

E (∞)
(98)

11 In fact, thanks to the statistical assumptions on the random variable ξ we
have ⟨ξ 2⟩ = 1/3 and therefore the standard deviation of α is ⟨α⟩σ/

√
3, i.e.

approximately 17%⟨α⟩ for σ = 0.3.
12 Clearly, we have selected the following Hilbert spaces H1 = L2 (Σ) and H2 =

L2 (X × T ) for the tensor product representation (7). Also, the operators Au and
Bu associated with the local inner products (95) and (94) are explicitly given as
Auφ = Au (ξ) φ (ξ) and Buψ = Bu (x, t) ψ (x, t).
13 We would like to remark that an analytical approach to nonlinear biorthogonal
decomposition can be also developed within a variational framework if it is
assumed that the modes Φk and Ψk are functionally dependent on the integration
measures Au and Bu . Indeed, minimization of the distance between u and its
biorthogonal representation (96) in a field-dependent norm yields to a nonlinear
eigenvalue problem.
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Fig. 2. Normalized spectral decay of polynomial chaos (⃝), Karhunen–Loève
(�) and field-dependent nonlinear biorthogonal expansions based on integration
measures minimizing the functionals F2 (�) and F1 (△).

Fig. 3. Field-dependent integration measures (probability densities) Au (ξ)
minimizing F1 (—), F2 (— · —) and F∞ (– – –).

corresponding to different optimal integration measures (E (∞)
is defined in Eq. (84) and it coincides with the trace of UUĎ or
UĎU). For the purpose of comparison we also include the spectral
decay of Karhunen–Loève and generalized (Legendre) polynomial
chaos expansions. In the latter case the spectrum is computed as
a standard L2 space–time norm of not-normalized chaos modesuk (x, t) (see Eq. (80)). Results of Fig. 2 clearly indicate that the best
convergence rate is achieved for integration measures minimizing

F1 [Au,Bu] = 1 −
µ2

1 [Au,Bu]
tr (UUĎ)

, (99)

where µ2
1 is the largest eigenvalue of the correlation operator UUĎ

(or UĎU) and the trace is explicitly obtained as

tr(UUĎ) =

∫
X

∫
T

∫
Σ

(u (x, t; ξ)− u0)
2Au (ξ)Bu (x, t) dξdxdt.

(100)

In Fig. 3 we compare different optimal integration measures14
Au (ξ) obtained by minimizing F1,F2 and F∞. The latter case
obviously corresponds to a measure which is coincident with the
first guess (97). In fact, as is easily seen from Eq. (85), F∞ is
already at its absolute minimum, i.e. F∞ ≡ 0 for all Au and Bu.
In general, for each specific choice of M the minimization of FM
allows us to identify a new probability density function Au (ξ)
having support within the range space of ξ . In other words, it
allows us to construct a nonlinear mapping between the random
input variable ξ and another random variable ζ which is capable

14 We would like to remark that the obtained measures are always positive
and greater than 10−2 . This is because we have implemented a constraint in the
minimization algorithm for the complementary energy functional in order to avoid
degenerated cases.
Fig. 4. Left column: Normalized space–time modes Ψk(x, t) (k = 1, 2, 3) based on
a decomposition theory with integration measures minimizing F1 . Right column:
Normalized Karhunen–Loève modes.

of significantly improving the converge rate of the underlying
biorthogonal expansion. Indeed, from Figs. 2 and 3 we see that the
highest convergence rate is based on a probability measure which
is rather concentrated near zero.

In Fig. 4we compare normalized space–timemodesΨk(x, t) of a
decomposition theory based on integration measures minimizing
F1 with standard Karhunen–Loève modes. Clearly, normalization
is relative to different space–time inner products. We see that
there are very small differences between the two sets of modes.
This is because Bu(x, t) ≈ 1. Similarly, in Fig. 5 we compare
globally orthogonal modes Φk (ξ) based on a decomposition
theory with integration measures minimizing F1 with standard
Karhunen–Loève modes. Global orthogonality is easily obtained
by renormalizing Φk (ξ) relatively to the probability measure
w(ξ) = 1/2. As we have seen in Section 2.3, this can be easily
done bymultiplying each locally orthogonalmode byA

1/2
u (ξ)/

√
2.

This implies that the modes shown in Fig. 5(a) and (b) are both
orthonormal relatively to the same standard inner product.

5. Summary

We have presented a general approach for nonlinear biorthog-
onal representation of continuous random fields that are func-
tionals of a finite number of random variables. This systematic
procedure can be employed in many areas of mathematical
physics, for stochastic low dimensional modelling of partial dif-
ferential equations and dimensionality reduction of complex non-
linear phenomena. The mathematical theory at the basis of the
proposed decompositionmethod relies on an equivalence between
nonlinear mappings of Hilbert spaces and local inner products, i.e.
inner products that may be functionals of the random field be-
ing decomposed. By employing a general operator framework, we
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a b

Fig. 5. (a) Gobally orthogonal modes Φk (ξ) based on a decomposition theory with
integration measures minimizing F1; (b) Karhunen–Loève modes. In both plots we
show the first (– – –), the second (—) and the third (— · —) mode.

have unified different types of expansions and provided necessary
and sufficient conditions for their completeness.

We have applied this new methodology to a simple time-
dependent stochastic heat conduction problem in a one-dimen-
sional infinite medium and we have shown how to construct
simple field-dependent orthogonal representations of random
space relatively to a metric that yields the fastest spectral decay
for the correlation operators. We remark that such a metric may
be not always a pertinent choice because it could lead to poor
convergences with respect to other useful metrics. In fact, when
we deal with functionals of the random field, such as the second
order moment or even more general nonlinear functionals such as
the residual of a stochastic partial differential equation, we have no
guarantee that an expansion of the random field based on a specific
local inner product will be also optimal for the representation of
the given functional. This is the case, for example, of the second
order moment for which the standard Karhunen–Loève expansion
provides the best convergence rate.

In the context of field-independent spectral representations this
naturally lead us to the following question: how do we select a
metric for an optimal representation of the solution to a specific
stochastic field equation? Unfortunately, a general answer to this
question is still lacking. Indeed, several effective approaches for
the representation of solutions to stochastic partial differential
equations have been recently proposed byNouy et al. [76,37,68,39]
and Chinesta et al. [38] based on the weak formulation of the field
equation itself. For linear equations it is easy to see that these
approaches employ equation-dependent inner products in a very
similar way to that one considered in the construction of action
functionals for non-potential operators [55,53,56,57]. Further
research is necessary in order to determine whether orthogonal
expansions based on inner products depending on a specific
equation are effective in representing its stochastic solution.
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Appendix. Completeness

Based on the notation of Section 2.2, in this Appendix we
address the following question: which conditions on u, Au and Bu
have to be satisfied in order to obtain a complete decomposition of
H by using a tensor product of UUĎ and UĎU spectral projections?
Intuitively, the answer is connected to the properties of u, Au and
Bu. But how?

We have seen that if U is compact then UĎ is compact, and
both UUĎ,UĎU are compact, symmetric and positive. The spectral
theorem [52, p. 260] therefore guarantees that the operators UUĎ

and UĎU admit the following spectral representations

UUĎ
=

−
h

λ2hPh, PĎ
h = Ph, (101)

UĎU =

−
h

λ2hQh, Q Ď
h = Qh, (102)

where λ2k are eigenvalues (counted with their multiplicity) of UUĎ

(or UĎU) while Ph and Qh are compact symmetric projections onto
H1 and H2, respectively. Convergence of (101) and (102) is in
norm. Moreover, Ph and Qh have a range of finite dimension and
they constitute a complete orthogonal family together with the
projections P0 and Q0 onto the null spaces of UUĎ and UĎU . This
latter part of the spectral theorem is very important because the
null spaces ofUUĎ orUĎU may be not empty sets, and thereforewe
may need to consider the associated pair of projections (P0,Q0) in
order to complete the representation. Since every linear operator
maps null elements onto null elements, the null space of UUĎ

coindices with that of UĎ, i.e.

N

UUĎ


= N


UĎ


, (103)

N

UĎU


= N(U), (104)

whereN denotes the null space of an operator. Moreover, compact
operators are necessarily bounded and this means that [52, p. 155]

N

UĎ


= R(U)⊥ ∩ H2, (105)

N(U) = R

UĎ

⊥
∩ H1, (106)

where R denotes the range of an operator and the symbol ‘‘⊥’’
denotes the orthogonal complement [52, p. 252]. In the specific
case of Eqs. (105) and (106) we have

R(U)⊥ =

ψ ∈ H2 | (ψ,ψ)u = 0, ∀ψ ∈ R(U)


,

R

UĎ

⊥
=


φ ∈ H1 | {φ,φ}u = 0, ∀φ ∈ R


UĎ


.

If we put together Eqs. (103)–(106), we obtain

N

UUĎ


= R(U)⊥ ∩ H2, (107)

N

UĎU


= R


UĎ

⊥
∩ H1. (108)

Now, if the null spaces (105) and (106) (or, equivalently, (107) and
(108)) are empty then the spectral families of projectors (Ph,Qh)
obtained from the eigenvalue problems (38)–(39) or from the
dispersion relations

UQh = λhPh, (109)

UĎPh = λhQh, (110)

are sufficient for a complete representation of any H-functional of
the random field. On the contrary, if the null spaces (105) and (106)
are not empty then we need to include the projections (P0,Q0)
onto such nulls paces in order to complete the representation.
We remark that it is often not an easy task to identify the null
space of an operator and therefore the practical implementation
of the completeness arguments just discussed may be not
straightforward.
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