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A computational methodology is developed to efficiently perform uncertainty quantifica-
tion for fluid transport in porous media in the presence of both stochastic permeability
and multiple scales. In order to capture the small scale heterogeneity, a new mixed multi-
scale finite element method is developed within the framework of the heterogeneous mul-
tiscale method (HMM) in the spatial domain. This new method ensures both local and
global mass conservation. Starting from a specified covariance function, the stochastic
log-permeability is discretized in the stochastic space using a truncated Karhunen–Loève
expansion with several random variables. Due to the small correlation length of the covari-
ance function, this often results in a high stochastic dimensionality. Therefore, a newly
developed adaptive high dimensional stochastic model representation technique (HDMR)
is used in the stochastic space. This results in a set of low stochastic dimensional subprob-
lems which are efficiently solved using the adaptive sparse grid collocation method (ASGC).
Numerical examples are presented for both deterministic and stochastic permeability to
show the accuracy and efficiency of the developed stochastic multiscale method.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Flow through porous media is ubiquitous, occurring from large geological scales down to microscopic scales. Several crit-
ical engineering phenomena like contaminant spread, nuclear waste disposal and oil recovery rely on accurate analysis and
prediction of these multiscale phenomena. Such analysis is complicated by heterogeneities at various length scales as well as
inherent uncertainties. For these reasons in order to predict the flow and transport in stochastic porous media, some type of
stochastic upscaling or coarsening is needed for computational efficiency by solving these problems on a coarse grid. How-
ever, most of the existing multiscale methods are realization based, i.e. they can only solve a deterministic problem for a
single realization of the stochastic permeability field. This is not sufficient for uncertainty quantification since we are mostly
interested in the statistics of the flow behavior, such as mean and standard deviation. In this paper, we propose a stochastic
multiscale approach which resolves both uncertainties and subgrid scales by developing a new multiscale method and
adopting a newly developed adaptive high dimensional stochastic model representation technique (HDMR). The goal of
the multiscale method is to coarsen the flow equations spatially whereas HDMR is used to address the curse of dimension-
ality in high dimensional stochastic spaces.

One of the challenging mathematical issues in the analysis of transport through heterogeneous random media is the mul-
tiscale nature of the property variations. Complete response evaluation involving full-scale spatial and temporal resolution
. All rights reserved.
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simulations of multiscale systems is extremely expensive. Computational techniques have been developed that solve for an
appropriate coarse-scale problem that captures the effect of the subgrid-scales. The most popular techniques developed for
such upscaling fall under the category of multiscale methods viz. the multiscale finite element (MsFEM) method [1–3], the
variational multiscale (VMS) method [4,5] and the heterogeneous multiscale (HMM) method [6,7]. The MsFEM was origi-
nally developed in [1,2] for the solution of elliptic equation based problems with multiscale coefficients using conforming
linear finite elements. The primal unknown is the nodal value, e.g. the pressure, and one can obtain the velocity by calculat-
ing the gradient of the pressure field given the finite element solution. The result is generally not accurate and conservation
of the flux in each element may be violated, which is an important property for the numerical solution of transport equations
in porous media. Therefore, a mixed multiscale finite element method (MMsFEM) that guarantees the local mass conserva-
tion at the element level was proposed in [8] using the lowest-order Raviart–Thomas mixed finite element [9]. The basic idea
of the method is to construct the multiscale finite element basis functions that incorporate the small scale information
through the solution of a local problem in each element and couple them through a global formulation of the problem. How-
ever, this work only produces a globally mass conserving velocity field. This work was extended in a number of important
ways to guarantee mass conservation on both fine- and coarse-scales [10,11]. A similar framework utilizing the finite volume
method as the global solver was also proposed in [12–14], which also preserves mass conservation at both scales. The basic
idea of the VMS method is to invoke a multiscale split of the solution into a coarse-scale part and a subgrid component. The
variational coarse-scale problem is performed and solved using the solution of the localized subgrid problem. Parallel to
MMsFEM, a mixed finite element version of VMS was also proposed in [15–17], which is often called ‘‘Numerical subgrid
upscaling’’. A thorough comparison of the above three methods for elliptic problems in porous media flows can be found
in [18].

HMM is a more general methodology for multiscale PDEs (see [7] for a review). The basic idea of HMM consists of two
components: selection of a macroscopic solver and estimating the needed macroscale data by solving locally the fine-scale
problem. It allows two different sets of governing equations on macro- and micro-scales, e.g. atomistic simulation on micro-
scale and continuum simulation on macro-scale [19,20]. This framework was utilized to solve multiscale elliptic problems
with the conforming linear FEM (FeHMM) [21–23]. The method was analyzed in a series of papers [24–26]. However, unlike
the MMsFEM, there is no discussion of the mixed version of FeHMM except the work in [27], where the author first devel-
oped the theory of the mixed finite element version of HMM for the elliptic problem and proved the stability and conver-
gence of this new method in the case of periodic coefficients. However, the theory in [27] is not suitable for realistic
problems such as flow through porous media since the permeability field is usually not periodic. In addition, no numerical
implementation was given in [27]. Motivated by the work in [27], in this paper, we first develop and implement the mixed
finite element version of HMM with application to flow transport in heterogeneous porous media, which we will call it
mixed heterogeneous multiscale method (MxHMM).

All of the above mentioned multiscale analyses of such systems inherently assume that the complete multiscale variation
of the permeability is known. This assumption limits the applicability of these frameworks since it is usually not possible to
experimentally determine the complete structure of the media at small scales. One way to cope with this difficulty is to view
the permeability variation as a random field that satisfies certain statistical correlations. This naturally results in describing
the physical phenomena using stochastic partial differential equations (SPDEs). The development of efficient stochastic
methods that are applicable for flow in porous media has drawn significant interest in the last few years. Several techniques
like generalized polynomial chaos expansions (gPC) [28–30], perturbation/moment equation methods [31–34] and stochas-
tic collocation method [32,35–38] have been considered. Among these methods, the collocation methods share the fast con-
vergence of the gPC method while having the decoupled nature of Monte Carlo (MC) sampling. This framework represents
the stochastic solution as a polynomial approximation. This interpolant is constructed via independent function calls to the
deterministic problem solver at different interpolation points which are selected based on special rules. Choice of collocation
points include tensor product of zeros of orthogonal polynomials [35,39] or sparse grid approximations [40–42]. It is well
known that the global polynomial interpolation cannot resolve local discontinuity in the stochastic space. Its convergence
rate still exhibits a logarithmic dependence on the dimension. For high-dimensional problems, a higher-interpolation level
is required to achieve a satisfactory accuracy. However, at the same time, the number of collocation points required increases
exponentially for high-dimensional problems (>10). Therefore, its computational cost becomes quickly intractable. This
method is still limited to a moderate number of random variables (5–10). To this end, Ma and Zabaras [43] extended this
methodology to adaptive sparse grid collocation (ASGC). This method utilizes local linear interpolation and uses the magni-
tude of the hierarchical surplus as an error indicator to detect the non-smooth region in the stochastic space and thus place
automatically more points around this region. This approach results in further computational gains and guarantees that a
user-defined error threshold is met. However, this method is still not suitable for heterogeneous porous media with small
correlation length leading to high stochastic dimensionality. In recent work, Ma and Zabaras [44] combined the ASGC with
the adaptive stochastic high dimensional model representation (HDMR) technique [45]. HDMR represents the model outputs
as a finite hierarchical correlated function expansion in terms of the stochastic inputs starting from lower-order to higher-
order component functions. HDMR is efficient at capturing the high-dimensional input–output relationship such that the
behavior for many physical systems can be modeled to a good accuracy only by the first few lower-order terms. An adaptive
version of HDMR is also developed to automatically detect the important dimensions and construct higher-order terms using
only the important dimensions. The heterogeneity of the porous media is often due to the small correlation length of the
covariance structure. All the above mentioned works did not take into account the multiscale nature of the permeability.
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Therefore, in this work, we will use both of these developments in the stochastic space together with the newly developed
MxHMM for the spatial discretization.

There exist several new stochastic multiscale methods for elliptic problems. In [46] and [47], the variational multiscale
method was extended to a stochastic version using gPC and stochastic collocation method respectively to solve a simple dif-
fusion problem. The stochastic multiscale finite element was also developed in [48] however only an elliptic problem was
solved to find the hydraulic head. More related work can be found in [49–51]. In [49], the stochastic numerical subgrid
upscaling method was also developed for the solution of the mixed form of the Darcy’s equation using the stochastic collo-
cation method. However, in that work, only the statistics of the coarse-scale velocity and pressure were solved and no flow
transport problem was investigated. In [50], a projection method for the solution of the stochastic mixed multiscale finite
element method was introduced where the velocity solution was projected onto multiscale velocity basis functions which
are precomputed using a set of realizations of the stochastic permeability field. It generally involves the solution of a large
linear system of equations to find the projection coefficients if the number of realizations is large. For each new permeability
sample, this method needs to solve one coarse-scale problem again and is generally computationally expensive. In addition,
the MC method is used to compute the statistics of the solution. In [51], this framework was used to sample the permeability
given measurements within the Markov chain Monte Carlo method (MCMC) framework and again no statistics of the satu-
ration were reported. However, in our application, we are primarily interested in mean behavior and a measure of uncer-
tainty, e.g. standard deviation, in the saturation of each phase. By using the adaptive HDMR and ASGC developed in [44],
we can obtain not only a surrogate model for the saturation profile but also can easily extract the statistics of the saturation.
Therefore, the novel contributions of this paper are as follows: (1) we develop a new mixed finite element version of the
heterogeneous multiscale method for the simulation of flow through porous media in the spatial domain; (2) we utilize
the newly developed HDMR technique to address the curse of dimensionality that occurs naturally in this problem due to
the heterogeneity of the permeability; (3) finally, we investigate the effect of the stochastic permeability on various statistics
of the saturation using the recently developed adaptive HDMR method.

This paper is organized as follows: In the next section, the mathematical framework of stochastic porous media flow
problem in the mixed form is considered. In Section 3.1, the ASGC and HDMR methods for solving SPDEs are briefly reviewed.
In Section 4, the theory of MxHMM is developed. Various examples with deterministic and stochastic permeability are given
in Section 5. Finally, concluding remarks are provided in Section 6.

2. Problem definition

In this section, we follow the notation in [43]. Let us define a complete probability space ðX;F ;PÞ with sample space X
which corresponds to the outcomes of some experiments, F � 2X is the r-algebra of subsets in X and P : F ! ½0;1� is the
probability measure. Also, let us define D as a d-dimensional bounded domain D � Rd ðd ¼ 2;3Þwith boundary @ D. The gov-
erning equations for immiscible and incompressible two-phase flow in porous media consists of an elliptic equation for fluid
pressure and a transport equation for the movement of fluid phases. For simplicity, we will neglect the effects from gravity,
capillary forces and assume that the porosity is a constant. The two phases will be referred to as water and oil, denoted as w
and o, respectively. The total Darcy velocity u and the pressure p satisfy for P-almost everywhere (a.e.) in X the following
SPDEs [18]
r � u ¼ �q; u ¼ �Kðx;xÞktrp; 8x 2 D; ð1Þ
with the following boundary conditions
p ¼ �p on @Dp; u � n ¼ �u on @Du: ð2Þ
The total velocity u = uo + uw is a sum of the velocities of oil uo and water uw. �q is a volumetric source term which is assumed
0 throughout the paper. The random permeability tensor K is assumed to be diagonal and uniformly positive definite. In
addition, we will assume K is a stochastic scalar function. The total mobility is given by kt = kw + ko, where ki models the re-
duced mobility of phase i due to the presence of the other phase. Without loss of generality, we assume that the boundary
conditions are deterministic and that the Neumman condition is homogeneous, �u ¼ 0 on @Du.

Furthermore, to assess the quality of the multiscale model, the unit mobility ratio displacement model is used, i.e. kw = S,
ko = 1 � S and hence kt = 1, where S is the water saturation. Under these assumptions, the water saturation equation is given
by
@Sðx; t;xÞ
@t

þ u � rSðx; t;xÞ ¼ 0; 8x 2 D; t 2 ½0; T�: ð3Þ
Since the permeability K is a stochastic function, all the unknowns p, u and S are also stochastic. Therefore, our complete
stochastic model is: find stochastic functions u : X� D! R, p : X� D! R and S : X� ½0; T� � D! R for P-almost every-
where (a.e.) x 2X such that the following equations hold:
r � uðx;xÞ ¼ 0; uðx;xÞ ¼ �Kðx;xÞrpðx;xÞ 8x 2 D; ð4Þ
@Sðx; t;xÞ

@t
þ uðx; t;xÞ � rSðx; t;xÞ ¼ 0; 8x 2 D; t 2 ½0; T�; ð5Þ
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with the boundary conditions
p ¼ �p on @Dp; u � n ¼ 0 on @Du; ð6Þ
together with appropriate initial and boundary conditions for S. Computation with this model is much more efficient than
using the actual two-phase flow model because the pressure and saturation equations are effectively decoupled. Throughout
this paper, the Darcy velocity u is first computed using the mixed finite element heterogeneous multiscale method devel-
oped in Section 4.1 and then the saturation equation is solved using a upwinding finite element scheme [52] in Section
4.2. Although these equations differ from the actual flow equations, they do capture many important aspects of two-phase
flow problems. Specifically, the effects of the heterogeneity are often similar in the unit mobility and two-phase flow prob-
lems [53].

Geostatistical models often suggest that the permeability field is a weakly stationary second-order random field such that
the mean log-permeability is constant and its covariance function only depends on the relative distance of two points rather
than their actual location [8]. Denote G(x, x) = log(K). We employ the ‘finite-dimensional noise assumption’ [40] and using
the Karhunen–Loève (K–L) expansion [54] we approximate G(x,x) with a finite-dimensional representation:
Gðx;xÞ ¼ E½GðxÞ� þ
XN

i¼1

ffiffiffiffi
ki

p
/iðxÞYiðxÞ; ð7Þ
where fYiðxÞgN
i¼1 are uncorrelated random variables. Also, /i(x) and ki are the eigenfunctions and eigenvalues of the covari-

ance function, respectively.
When using the K–L expansion, we here assume that we obtain a set of mutually independent random variables. Denote

the probability density functions of fYiðxÞgN
i¼1 as qi, i = 1, . . . ,N. Let Ci be the image of Yi. Then qðYÞ ¼

QN
i¼1qiðYiÞ is the joint

probability density of Y = (Y1, . . . ,YN) with support C � C1 � C2 � � � � � CN 2 RN . Then the stochastic log permeability can be
represented by G(x,x) = G(x,Y1 , . . .,YN) = G(x,Y).

2.1. Stochastic variational formulation

By using the Doob–Dynkin lemma [43], the solutions of Eqs. (4) and (5) can be described by the same set of random vari-
ables fYiðxÞgN

i¼1. Following [49], we define appropriate function spaces that encode variations of the function in the physical
domain D and in the stochastic space C.

In the physical space, we introduce the following common functional spaces [17,49]:
W � L2ðDÞ ¼ p :

Z
D
jpj2dx ¼ kpk2

L2ðDÞ < þ1
� �

; ð8Þ
with inner product
ðp; qÞ � ðp; qÞL2ðDÞ :¼
Z

D
pqdx; p; q 2 L2ðDÞ; ð9Þ
and
Hðdiv;DÞ ¼ fu : u 2 ðL2ðDÞÞ2;r � u 2 L2ðDÞg; ð10Þ
with inner product
ðu;vÞ � ðu;vÞHðdiv;DÞ :¼
Z

D
u � v dx;u;v 2 Hðdiv;DÞ: ð11Þ
We will also make use of the following space:
V � H0;uðdiv;DÞ ¼ fu : u 2 Hðdiv;DÞ;u � n ¼ 0g: ð12Þ
The duality product is defined as:
h�u; �pi � h�u; �pi@Dp
:¼
Z
@Dp

�u�pdx; �u 2 H1=2ðDÞ; �p 2 H�1=2ðDÞ: ð13Þ
The functional space in C is defined as follows:
U � L2
qðCÞ ¼ p :

Z
C
jpðYÞj2qðYÞdY

� �1=2

<1
( )

: ð14Þ
By taking its tensor product with the previous deterministic spaces, one can form the stochastic functional spaces:
W ¼ U �W; V ¼ U � V : ð15Þ
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Multiplication of Eqs. (4) and (5) by appropriate test functions and integration by parts leads to the following weak formu-
lations: find u 2 V; p 2 W such that
Z

C
ðK�1u;vÞqðYÞdY �

Z
C
ðr � v; pÞqðYÞdY ¼ �

Z
C
hv � n; �piqðYÞdY ; 8v 2 V; ð16Þ

Z
C
ðl;r � uÞqðYÞdY ¼ 0; 8l 2 W; ð17Þ
and S 2 W for each t 2 [0,T] such that
Z
C

@S
@t
; q

� �
qðYÞdY þ

Z
C
ðu � rS; qÞqðYÞdY ¼ 0; 8q 2 W: ð18Þ
Without loss of generality, we assume that the support of the random variables Yi is Ci = [0,1] for i = 1, . . . ,N and thus the
bounded stochastic space is a N-hypercube C = [0,1]N.

3. High dimensional model representation technique (HDMR) for the solution of SPDEs

The original infinite-dimensional stochastic problem is now restated as a finite N-dimensional problem. Then we can ap-
ply any stochastic method in the random space and the resulting equations become a set of deterministic equations in the
physical space that can be solved by any standard deterministic discretization technique, e.g. the finite element method. The
solution to the above SPDEs Eqs. (16)–(18) can be regarded as stochastic functions taking real values in the stochastic space
C. For example, we can consider the pressure as a stochastic function p : C! R and we use the notation p(Y) to highlight the
dependence on the randomness. Then it can be shown that the weak formulation Eqs. (16)–(18) is equivalent to [39]: for a.e.
q 2 C the following deterministic weak form equations hold:
ðK�1u;vÞ � ðp;r � vÞ ¼ �h�p;v � ni; 8v 2 V ; ð19Þ
ðl;r � uÞ ¼ 0; 8l 2W; ð20Þ
@S
@t
; q

� �
þ ðq;u � rSÞ ¼ 0; ; 8q 2W: ð21Þ
This nature is utilized by the stochastic collocation method, where the basic idea is to employ a finite element approximation
for the spatial domain and approximate the multi-dimensional stochastic space C using interpolating functions on a set of
collocation points fY igM

i¼1 2 C [43]. In the next section, a recent method HDMR is used to construct the multi-dimensional
interpolant.

3.1. High dimensional model representation (HDMR)

In this section, the basic concepts of HDMR are briefly reviewed following closely the notation in [44]. For detailed
descriptions of the ASGC and HDMR applied to stochastic systems, the interesting reader may refer to [43,44].

In order to alleviate the curse of dimensionality, we have combined ASGC with the adaptive stochastic high dimensional
model representation (HDMR) technique in [44]. HDMR represents the model outputs as a finite hierarchical correlated func-
tion expansion in terms of the stochastic inputs starting from lower-order to higher-order component functions. In that
work, the CUT-HDMR is adopted to construct the response surface of the stochastic solution. Within the framework of
CUT-HDMR, a reference point Y ¼ ðY1;Y2; . . . ; YNÞ is first chosen. According to our past experience, the mean vector of the
random input Y is a good choice for the reference point. Then HDMR is given in a compact form as [44]
f ðYÞ ¼
X
u #D

X
v # u

ð�1Þjuj�jvjf ðY vÞjY¼YnY v
; ð22Þ
for a given set u #D, where D :¼ f1; . . . ;Ng denotes the set of coordinate indices and we define f ðY ;Þ ¼ f ðYÞ. Here, Yv de-
notes the jvj-dimensional vector containing those components of Y whose indices belong to the set v, where jvj is the car-
dinality of the corresponding set v, i.e. Yv = (Yi)i2v. The notation Y ¼ Y n Y v means that the components of Y other than those
indices that belong to the set v are set equal to those of the reference point. For example, if v = {1, 3, 5}, then jvj = 3 and f(Yv)
is a function of only three random variables Y1, Y3, Y5 while the other dimensions satisfy Yi ¼ Yi for i 2 D and i R v.

Therefore, the N-dimensional stochastic problem is transformed to several lower-order jvj-dimensional problems f(Yv)
which can be easily solved by the ASGC [44]:
f ðYÞ ¼
X
u #D

X
v # u

ð�1Þjuj�jvj
X
kik6Nþr

X
j

wij
vðxÞ � ai

jðY vÞ; ð23Þ
where the multi-index i ¼ ði1; . . . ; ijvjÞ 2 Njvj, the multi-index j ¼ ðj1; . . . ; jjvjÞ 2 Njvj and kik = i1 + � � � + ijvj. r is the sparse grid
interpolation level and the summation for j is over collocation points selected in a hierarchical framework [43]. Here, wij

vðxÞ is
the hierarchical surplus for different sub-problems indexed by v, which is just the difference between the function value at



X. Ma, N. Zabaras / Journal of Computational Physics 230 (2011) 4696–4722 4701
the current point and interpolation value from the coarser grid. ai
jðY vÞ is the multi-linear basis function constructed from

the tensor product of the corresponding one-dimensional functions, which here is only a function of the coordinates belong-
ing to the set v.

In the context of incorporating adaptivity, we have chosen the collocation points based on the Newton–Cotes formulae
using equidistant support nodes. The basic idea of adaptive sparse grid collocation (ASGC) method here is to use a chosen error
indicator which incorporates the information from the hierarchical surplus to detect the smoothness of the solution and refine
the hierarchical basis functions whose magnitude is equal or greater than e, where e is a predefined adaptive refinement
threshold. If this criterion is satisfied, we simply add the 2N neighbor points to the current point of the sparse grid [43].

In addition, it is also easy to extract statistics by integrating directly the interpolating basis functions. The probability den-
sity function q(Y) is 1 since the stochastic space is a unit hypercube [0,1]N. As shown in [43], the multi-dimensional integral
is simply the product of the 1D integrals which can be computed analytically. Denoting

R
C ai

jðYÞdY ¼ Ii
j, then we have
Ju ¼
X
v # u

ð�1Þjuj�jvj
X
kik6Nþr

X
j

wij
vðxÞ � I

i
j; ð24Þ
as the mean of the component function fu. Then the mean of the HDMR expansion is simply E½f ðYÞ� ¼
P

u #DJu. To obtain the
variance of the solution, we can similarly construct an approximation for u2 and use the formula Var½uðxÞ� ¼
E½u2ðxÞ� � ðE½uðxÞ�Þ2.

It is noted that the solution method of each sub-problem is not limited to ASGC. It is also possible to use the sparse grid
based on Gauss quadrature rule [40,42] to integrate the component functions of the CUT-HDMR in order to obtain the mean
and the standard deviation directly. In this case, Eq. (24) can be rewritten as
Ju ¼
X
v # u

ð�1Þjuj�jvj
X
kik6Nþr

X
j

Xij
v � f ðx;Y i

jÞ; ð25Þ
where X is the quadrature weight and f(x,Y) is the function value at the collocation points. The advantage of this method is
its higher accuracy than the linear interpolation. With Gauss quadrature, we can compute the mean and the standard devi-
ation directly, however, we do not have a surrogate model (function approximation) like when using ASGC. In this work, we
would also like to extend our previous ASGC formulation to include the Gauss quadrature rule.

As shown in [44], it is not necessary to compute all the terms in Eq. (22). We can take only a subset S of all indices u #D
while retaining the approximation accuracy. Therefore, we can define an interpolation formula ASf for the approximation of
f which is given by
ASf :¼
X
u2S
AðfuÞ: ð26Þ
Here, AðfuÞ is the sparse grid interpolant of the component function fu and ASf is the interpolant of the function f using the
proposed method with the index set S. It is common to refer to the terms {fu: juj = m} collectively as the ‘‘order-m terms’’.
Then the expansion order for the decomposition Eq. (26) is defined as the maximum of m. Note that the number of colloca-
tion points in this expansion is defined as the sum of the number of points for each sub-problem from Eq. (23), i.e.
M ¼

P
u2SMu.

Based on this, we have also developed the adaptive version of HDMR to find the optimal set S in [44]. A weight is defined
for each expansion term in [44]. We always construct the zeroth- and first-order HDMR expansion to identify the important
dimensions if the weight is greater than a predefined error threshold h1. Then we adaptively construct higher-order compo-
nent functions increasingly from lower-order to higher-order and again only select those terms whose weight is greater than
h1. In this way, we find those terms which may have significant contribution to the overall expansion while ignoring other
trivial terms thus reducing the computational cost for high-dimensional problems. In addition, if the relative error between
two consecutive orders is smaller than another threshold h2, the HDMR expansion is considered converged and the construc-
tion stops. For more details, please refer to [44].

4. Spatial finite element discretization

As stated in Section 3, in order to utilize the HDMR Eq. (23), we only need to seek the solution (u, p, S) at each collocation
point in the stochastic space C. In other words, our goal is reduced to: for each permeability realization K(i)(x) = K(x, Yi),
i = 1, . . . ,M, we solve the deterministic problem: find u(i) 2 V, p(i) 2W and S(i) 2W such that for i = 1, . . . ,M
ðK�1uðiÞ;vÞ � ðpðiÞ;r � vÞ ¼ �h�p;v � ni; 8v 2 V ; ð27Þ
ðl;r � uðiÞÞ ¼ 0; 8l 2W; ð28Þ

@SðiÞ

@t
; q

 !
þ ðq;uðiÞ � rSðiÞÞ ¼ 0; 8q 2W: ð29Þ
In this section, mixed finite element methods are introduced to solve the above equations in the spatial domain. Since the
pressure Eqs. (27) and (28) are effectively decoupled from the saturation equation (29), we will first introduce the multiscale
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method to find u, p and then use the upwinding finite element method to find S. To simplify the notation, we will omit the
superscript i and assume the deterministic equations are satisfied for an arbitrary permeability sample in the stochastic
space.

4.1. Mixed finite element heterogeneous multiscale method (MxHMM)

In the porous media flow problem, the heterogeneity of the permeability field will have a great impact on the global flow
conditions. In order to resolve the fine-scale velocity accurately with lower computational cost, a multiscale method is
needed. In addition, the mixed finite element method is also required to compute the velocity and pressure simultaneously,
if we want to have an accurate velocity and ensure mass conservation. We can identify at least two main multiscale meth-
ods: multiscale finite element or finite volume methods [8,10,12] and the variational multiscale methods [15,17]. In this sec-
tion, we will develop a multiscale method which is based on the framework of the heterogeneous multiscale method [23].
We present the discretization and methodology for a two-dimensional system. Extension to three-dimensions is
straightforward.

Consider a partition, T h for the domain D into non-overlapping elements ei; T h ¼
SNh

i¼1ei, where Nh is the number of ele-
ments of the grid. Define also the skeleton of the partition, SPh ¼

SMh
a¼1ma, where Mh is the number of element faces denoted

by ma. The partition T h is regarded as the fine-scale grid. The multiscale permeability is defined as a cell-wise constant on this
grid. To implement the multiscale method, we also consider a coarse-scale partition of the same domain D. Denote this par-
tition as T c ¼

SNc
i¼1Ei. Denote by SPc ¼

SMc
a¼1Ka the associated skeleton of the coarse-scale discretization. Here, Nc is the num-

ber of coarse elements and Mc is the number of coarse element faces denoted by Ka. In order to conserve the mass at the
coarse-scale, we also assume for simplicity that the partitions T h and T c are nested, conforming and consist of rectangular
elements. Fig. 1 shows a fine grid (finer lines) and a corresponding coarse grid (heavier lines).

4.1.1. The coarse-scale mixed finite element discretization
Now consider the finite dimensional subspaces on the coarse-scale Vc 2 V and Wc 2W. The mixed finite element method

approximation of Eqs. (27) and (28) on the coarse-scale reads: find the coarse-scale (uc, pc) 2 Vc �Wc such that
ðK�1uc;vcÞ � ðpc;r � vcÞ ¼ �h�p;vc � ni; 8vc 2 Vc; ð30Þ
ðlc;r � ucÞ ¼ 0; 8lc 2Wc: ð31Þ
Note that Vc and Wc should satisfy the discrete inf–sup condition [55]. In this work, Vc is taken to be the lowest-order
Raviart–Thomas space [9], RT0ðT cÞ and Wc is taken to be the space of piece-wise constants on the coarse-scale mesh,
P0ðT cÞ. Other choices can be found in [55]. Therefore, we define the finite element space for the coarse-scale velocity as:
Vc ¼ uc : uc ¼
XMc

a¼1

wc
auc

a; uc
a ¼ 0; 8Ka 2 @Du

( )
; ð32Þ
where wc
a is the RT0 basis functions on the uniform mesh of rectangular elements associated with the coarse element face Ka.

For a reference element E ¼ xL
1; x

R
1

� �
� xL

2; x
R
2

� �
with the area jEj, there are four vector RT0 basis functions with non-zero

support:
wc
1 ¼ xR

1 � x1
	 


= xR
1 � xL

1

	 

;0

� �T
; wc

2 ¼ 0; xR
2 � x2

	 

= xR

2 � xL
2

	 
� �T
; ð33Þ

wc
3 ¼ x1 � xL

1

	 

= xR

1 � xL
1

	 

;0

� �T
; wc

4 ¼ 0; x2 � xL
2

	 

= xR

2 � xL
2

	 
� �T
: ð34Þ
(a) (b)

Fig. 1. Schematic of the domain partition: (a) fine- and coarse-scale grids and (b) fine-scale local region in one coarse element.
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The basis functions satisfy the properties such that wc
i � nj ¼ 1 if i = j, otherwise wc

i � nj ¼ 0 for i, j = 1, . . . ,4. Therefore uc
a is va-

lue of the coarse-scale flux at the middle point of the side Ka, i.e. uc � na ¼ uc
a, where na is the unit outer normal to the inter-

face Ka. The coarse-scale pressure approximation is piecewise constant on the coarse-mesh and P0ðT cÞ is
Wc ¼ pc : pc ¼
XNc

a¼1

/c
i pc

i

( )
; ð35Þ
where /c
i is the coarse-scale pressure basis function for the coarse element i defined as
/c
i ðxÞ ¼

1; if x 2 Ei;

0; if x R Ei:

�
ð36Þ
pc
i is the corresponding pressure degree of freedom (the average pressure in coarse element Ei).

4.1.2. The modified bilinear form and the subgrid problem
From the mixed finite element formulation of Eqs. (30) and (31), we can assemble the global linear system of equations. It

is noted that only the bilinear form (K�1uc, vc) has the contribution from the fine-scale permeability. Denote A = (Aij) the glo-
bal matrix from assembling the bilinear form (K�1uc,vc), where
Aij ¼
Z

D
wc

i ðxÞ � K
�1ðxÞwc

j ðxÞdx: ð37Þ
We could evaluate Eq. (37) by the 2 � 2 Gauss quadrature rule in each coarse element: let
fijðxÞ ¼ wc
i ðxÞ � K

�1ðxÞwc
j ðxÞ; ð38Þ
then
Aij ¼
Z

D
fijdx ’

X
E2T c

X
nk2E

skfijðnkÞ; ð39Þ
where nk and sk, k = 1, . . . ,4 are the quadrature points and weights (including the determinant of the Jacobian matrix) in the
coarse element E, respectively.

It is obvious that any realization of the permeability field at the quadrature point K(nk) is not able to capture the full infor-
mation at the subgrid scale in the corresponding coarse element since the size of the coarse element is much larger than the
characteristic length scale of the multiscale permeability field. Therefore, following the framework of the heterogeneous
multiscale method [22,27], in order to capture more information from subgrid scale, we need to modify the bilinear form
Eq. (38) at the quadrature point nk as:
fijðnkÞ ¼
1
jEdk
j

Z
Edk

~uikðxÞ � K�1 ~ujkðxÞdx; k ¼ 1; . . . ;4; ð40Þ
where ~uikðxÞ; i ¼ 1; . . . ;4 is the solution to the following local subgrid problem in each sampling domain Edk
� E; k ¼

1; . . . ;4:
r � ~uikðxÞ ¼ 0; ~uikðxÞ ¼ �Kr~pikðxÞ; 8x 2 Edk
; ð41Þ
with appropriate boundary conditions which we will discuss later. ~piðxÞ can be considered as the subgrid pressure.

4.1.3. The choice of the sample domain Edk

First, we will discuss the choice of the sampling domain Edk
of the subgrid problem. In the original problem definition of

the FeHMM [22,27], the coefficient of the elliptic equation (here K) is assumed to be periodic. Therefore, the sampling do-
main was taken around each quadrature point as Edk

¼ nk þ dI, where I = (�1/2, 1/2)2 and d is equal to one period of the coef-
ficient in the elliptic equation, as in Fig. 2(a).

However, in general, the permeability is not periodic. If the sampling domain is too small, one cannot capture enough
information on the subgrid scale. According to the numerical results in [1,3,8,11,56,57], the larger the size of the sampling
domain is, the more accurate the computed result is. Therefore, we would like to take the sampling domain to be the same as
the coarse element, i.e. Edk

¼ E; @Edk
¼ @E as in Fig. 2(b). In addition, we also assume that the fine grid within each coarse

element is the same as the fine-scale grid T h, where the permeability is defined, see Fig. 1(b). In this way, we can ensure
global continuity of the flux across the coarse element.

4.1.4. The choice of the boundary conditions
Hence, all the subgrid problems are solved within the same coarse element. The only difference is the applied boundary

condition. The boundary condition of the problem in Eq. (41) plays a significant role in the accuracy of the multiscale method
as discussed in [56], where three different boundary conditions are considered: the periodic boundary condition, Dirichlet
boundary condition, and the Neumann boundary condition. However, when mixed finite element formulation is used on
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Fig. 2. (a) Schematic of the original HMM method, where the sampling domain is around the quadrature point. (b) Schematic of the proposed MxHMM
method, where the sampling domain is the same as the coarse element.
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the coarse-scale, only the Neumann boundary condition is applicable here. In [27], the following Neumann boundary con-
dition is proposed:
Fig. 3.
accordi
~uik � n@E ¼ wc
i ðnkÞ � n@E; on @E; ð42Þ
where wc
i ðnkÞ denotes the value of the ith coarse-scale RT0 finite element basis function at the quadrature point nk, k = 1, . . . ,4

and n@E denotes the unit outer normal of the coarse element boundary @E. According to the definition of RT0 basis function in
Eqs. (33) and (34), this boundary condition applies a uniform flow with magnitude wc

i ðnkÞ from one side to the opposite side
while keeping no-flow conditions on the other two sides. The example of w1(n1) is shown in Fig. 3. However, this boundary
condition only reflects the local heterogeneity structure within the current coarse element. It does not contain the flow con-
dition across the coarse element interface which is often important in guaranteeing the continuity of flux on the coarse-scale.
Therefore, we would like to propose a new boundary condition which reflects the heterogeneous structure across the coarse
element boundary.

For a fine-scale element interface ma, denote the two adjacent fine-scale elements as ei and ej, i.e. ma = ei
T

ej. According to
two-point flux approximation finite volume method, if the element interface is in the y-direction, the element interface
transmissibility in the x-dimension is defined by Gautier et al. [58]:
Tma ¼ 2jmaj
Dxi

Ki
þ Dxj

Kj

� ��1

; ð43Þ
where jmaj is the length of the interface, Dxi denote the length of element ei in the x-coordinate direction, and Ki is the per-
meability in element ei. Similar expression can be defined in the y-dimension. The fine-scale transmissibility of interface ma

reflects the flow condition across elements. Denote the total applied flux along the coarse element interface K due to the
value of the ith coarse-scale basis functions at the kth quadrature point as
Qik ¼
Z

K
wc

i ðnkÞ � n ds ¼ jKjwc
i ðnkÞ � nK: ð44Þ
In this work, we consider rectangular elements oriented along the coordinate axes. Hence, we modify the boundary condi-
tion Eq. (42) to:
(a) (b)

Schematic of different boundary conditions. (a) The uniform boundary condition. (b) The modified boundary condition where the flux is scaled
ng to the fine-scale transmissibilities.
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~uik � njK ¼ Q ik �
TmaP

mb�KTmb
jmbj

; on K � @E; ð45Þ
where Qik is defined in Eq. (44) and Tma is the fine-scale transmissibility of interface ma �K as defined in Eq. (43) for an inter-
face in the y-direction. See for example Q11 in Fig. 3(b). When the interface is in the x-direction, we change the definition of
Tma accordingly. It is clear that the sum of the flux applied on the fine-scale element from Eq. (42) is equal to the total flux
applied on the same coarse element boundary from Eq. (45). In other words, we just redistribute the total flux on the coarse-
scale element boundary according to the ability to transport the flow at the interface of each fine-scale element. This is
clearly a better choice for boundary condition since it reflects the flow conditions across the inter-block boundaries.

4.1.5. Final coarse-scale and subgrid scale problems
Finally, our subgrid problem in a coarse-element E is defined as follows: For each quadrature point nk, k = 1,. . .,4, we seek

the solution ~uik to the following subgrid problem for each coarse-scale RT0 basis function wc
i ; i ¼ 1; . . . ;4:
r~uikðxÞ ¼ 0; ~uikðxÞ ¼ �Kr~pikðxÞ; 8 x 2 E; ð46Þ
with the Neumann boundary condition defined in Eq. (45).
For convenience, we will define the corresponding modified bilinear form as: for any uc, vc 2 Vc
AhðK�1uc;vcÞ :¼
X
E2T c

X4

k¼1

sk

jEj

Z
E

UkðxÞ � K�1VkðxÞdx; ð47Þ
where U and V are defined through the subgrid problems. The assembly of this bilinear form will be detailed in Section 4.1.6.
Therefore, the MxHMM version of Eqs. (30) and (31) on the coarse-scale reads: Find the coarse-scale (uc, pc) 2 Vc �Wc such
that
AhðK�1uc;vcÞ � ðpc;r � vcÞ ¼ �h�p;vc � ni; 8vc 2 Vc; ð48Þ
ðlc;r � ucÞ ¼ 0; 8lc 2Wc; ð49Þ
with the boundary condition
pc ¼ �p on @Dp; uc � n ¼ 0 on @Du: ð50Þ

The major difference between Eqs. (30),(31) and (48),(49) lies in the bilinear form Ah(�,�), which needs solution of the local
subgrid problem Eq. (46). It is through these subgrid problems and the mixed formulation that the effect of the heterogeneity
on coarse-scale solutions can be correctly captured. Unfortunately, it is not trivial to analyze this multiscale method in a
general case, but convergence results have been obtained using the homogenization theory in the case of periodic
coefficients [27].

4.1.6. Solution of the subgrid problems and assembly of the bilinear form
In general, the subgrid problem Eq. (46) can be solved through the standard or mixed finite element method. In the pres-

ent setting, since we are only interested in the velocity, the mixed finite element method is preferred. Let Eh ¼ T hðEÞ denote
the fine grid defined over one coarse element E. As mentioned before, it coincides with the fine-scale grid T h. The subgrid-
scale velocity functional spaces will be defined on the fine grid Eh of each coarse element:
VE ¼ ~u : ~u ¼
XME

a¼1

wh
a
~uh

a ; wh
a 2 RT0ðEhÞ

( )
; ð51Þ
where ME is the number of edges in E, and the pressure space is defined similarly:
WE ¼ ~p : ~p ¼
XNE

a¼1

/h
i
~ph

i ; /h
i 2 P0ðEhÞ

( )
; ð52Þ
where NE is the number of elements in E. It is noted that, as the Neumann boundary conditions in Eq. (45) are imposed on all
boundaries of the coarse element E, an extra constraint must be added to make the subgrid problem well posed. In our imple-
mentation, the pressure is prescribed to 0 at one of the elements in Eh.

The mixed finite element method approximation of Eq. (46) in coarse element Ei on the subgrid-scale grid reads: find the
subgrid-scale ð~u; ~pÞ 2 VEi

�WEi
such that
ðK�1 ~u; ~vÞ � ð~p;r � ~vÞ ¼ 0; 8~v 2 VEi
; ð53Þ

ð~l;r � ~vÞ ¼ 0; 8~l 2WEi
; ð54Þ
with the boundary condition Eq. (45). It is noted that for each coarse element, we need to solve 4 (number of quadrature
points) � 4 (number of basis functions) = 16 subgrid problems. However, the only difference between them are in the bound-
ary conditions. Therefore, we only need to assemble the stiffness matrix once and solve the same algebraic problem with
different right hand vectors.
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Following a standard assembly process for the global matrix of the coarse-scale bilinear form Eq. (47), we compute the
contribution AE to the global matrix associated with the coarse element E, where AE is a 4 � 4 matrix. Assume the solution of
the subgrid problem at the kth Gaussian point can be written as ~uik ¼

PME
j¼1ck

ijw
h
j ; i ¼ 1; . . . ;4. We can write all the solutions as

a 4 � NE matrix, Ck ¼ ck
ij

� �
where the ith row contains the subgrid solution corresponding to the ith coarse-scale basis func-

tion wc
i . Therefore, the value of AE from the kth Gauss point can be denoted as Ak

E ¼ ak
E

	 

ij, where
ak
E

	 

ij ¼

sk

jEj cil

Z
E

K�1
wh

l � w
h
mdx cjm: ð55Þ
Denoting the bilinear form matrix from the subgrid-scale problem as Bk ¼ bk
lm

� �
; bk

lm ¼
R

E K�1
wh

l � w
h
mdx, we can write:
AE ¼
X4

k¼1

sk

jEjCkBkðCkÞT : ð56Þ
Finally, we would like to comment on the solution of the linear systems resulting from the mixed finite element discretiza-
tion. The linear system is indefinite, and it is difficult to solve using a common iterative method. In our implementation, we
use the Schur complement matrix to solve the pressure first and then solve the velocity [11]. The linear system is solved
using preconditioned conjugate gradient method. All the implementations are based on the data structure of the numerical
library PETSc [59].

4.2. Reconstruction of the fine-scale velocity and solution of transport equation

So far we have described the development of the mixed finite element heterogeneous multiscale method for the solution
of the coarse-scale velocity. However, in order to simulate the transport equation accurately, we need to reconstruct the fine-
scale velocity using the coarse-scale velocity and the subgrid permeability. It is noted that the coarse-scale velocity is not
conservative at the fine-scale. In order to obtain a mass-conservative fine-scale velocity, we solve Darcy’s equation within
each coarse element E using Neumann boundary condition given by the coarse-scale flux along the coarse-element bound-
ary. The coarse-scale flux, denoted by Qc is directly given as the solution of the system of linear equations from the coarse-
scale discretization. That is, for each E 2 T c , one solves the fine-scale velocity uh inside E by [18,58]
r � uh ¼ 0; uh ¼ �Krph; 8x 2 E; ð57Þ
with the boundary condition similar to the one used in Eq. (45):
uh � njK ¼ Q c � TmaP
mb�KTmb

jmbj
; on K � @E; ð58Þ
where Q c ¼
R

K uc � nds is the coarse-scale flux across the coarse element interface K, and Tma is the fine-scale transmissibility
of interface ma �K. Since uc is the solution of the coarse-scale problem using the mixed finite element method, the coarse-
scale flux Qc is obtained directly. Similar to the subgrid problem, Neumann boundary condition is applied on all the bound-
aries of the coarse element. To obtain a unique solution of the above problem, the pressure is fixed to the coarse-scale
pressure pc in the center element of the mesh Eh. As indicated in [18,58,60], this reconstruction step guarantees the conti-
nuity of the flux across the fine-scale elements between two coarse blocks and accounts for subgrid heterogeneity. It also
forces the sum of the fine grid fluxes to be equal to the corresponding coarse-scale flux. In this way, the resulting fine-scale
velocity is conservative on fine-scale grid as well as the coarse-scale grid.

For the solution of the saturation equation, we use the upwinding finite element method [8,52], which is equivalent to the
standard upstream weighted finite volume method. We also approximate the saturation as a piecewise constant in each fine-
scale element e, P0ðT hÞ, the same as the pressure space. Given the discrete reconstructed fine-scale velocity field uh, for a
fine-scale element e 2 T h. We define the inflow boundary of the element as @e�, if uh � n < 0 on @e� and similarly the outflow
boundary as oe+, if uh � n P 0 on @e+. For any piecewise constant function Sh over the mesh T h, the upwinding value on @e is
defined as eSh and is equal to the interior trace of Sh if on @e+ and equal to the exterior trace of Sh if on @e�. In addition, we also
assume eSh ¼ 0 on @e�

T
@D.

Therefore, the weak formulation of the upwinding scheme is to find Sh 2Wh such that
Z
D

@Sh

@t
qhdxþ

X
e2T h

Z
@e
ðuh � nÞeShqhds ¼ 0; 8qh 2Wh: ð59Þ
Let Dt be the time step and denote by Sk
i the approximation of the water saturation in fine-scale element ei at time tk. Then

the discrete form of the saturation Eq. (59) is:
Skþ1
i þ Dt

jeij
X
j–i

fij Skþ1
� �

qij ¼ Sk
i : ð60Þ
Here, jeij is the area of the element ei. fij(S) = max{sign (qij)Si, �sign (qij)Sj} is the upwinding water saturation for the interface
mij = @ei

T
@ej. Finally, the flux across the boundary is qij ¼

R
mij

uh � nijds where nij is the unit normal to mij pointing from ei to ej.
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It is noted that in Eq. (60), only the flux qij on the each interface is required. This value is directly computed as the solution
from our multiscale approach. This is the main reason why the method discussed here is better than the stabilized conform-
ing finite element method [61].

It is emphasized again that we consider the transport problem with unit mobility ratio, so the saturation changes will not
affect the pressure or velocity. Therefore, we can first compute the fine-scale velocity with our multiscale approach and then
solve the transport equation. The flow rate of produced oil at the outlet boundary is denotes as qo and the flow rate of pro-
duced water qw. To assess the quality of our multiscale approach, we will use the so called water cut curve F, which defines
the fraction of water in the produced fluid, i.e., F = qw/(qw + qo) as a function of time measured in pore volume injected (PVI).
The water-cut is defined as
FðtÞ ¼
R
@Dout ðuh � nÞSdsR
@Dout ðuh � nÞds

; ð61Þ
where @Dout refers to the part of the boundary with outer flow, i.e. uh � n > 0. PVI represents dimensionless time and is com-
puted as
PVI ¼
Z

Qdt=Vp; ð62Þ
where Vp is the total pore volume of the system, which is equal to the area of the domain D here and Q ¼
R
@Dout ðuh � nÞds is the

total flow rate.
The complete schematic of the stochastic multiscale method for porous media flow is illustrated in Fig. 4.
5. Numerical examples

In the first two examples, we solve the problem with deterministic permeability in order to validate the newly developed
multiscale method. In the third example, the complete stochastic problem with a known covariance function is addressed.

5.1. Simulation in realistic two-dimensional reservoirs

This test case is a two-dimensional problem with a highly heterogeneous permeability. The permeability field shown in
Fig. 5 is taken from the top layer of the 10-th SPE comparative solution project [62]. The fine grid on which the permeability
is defined consists of 60 � 220 gridblocks. It has Dirichlet boundary conditions �p ¼ 100 on fx2 ¼ 0g; df �p ¼ 0 on {x2 = 220}
and Neumann boundary conditions u � n = 0 on both {x1 = 0}, {x1 = 60}. We also impose zero initial condition for saturation
S(x,0) = 0 and boundary condition S(x, t) = 1 on {x2 = 0}.

The reference solution is computed on the fine-scale grid using single-scale mixed finite element method directly, as
shown in Figs. 6(a) and 7(a). We also show the solutions obtained with the MxHMM method on various coarse grids in Figs.
6 and 7. It is seen that the flow focuses along the region with higher permeability while bypassing the low-permeability
areas. At the same time, the velocity field displays significant small-scale structure corresponding to the spatial permeability
variations. The multiscale solution successfully captures all the main characters of the fine-scale results and compares very
Fig. 4. Schematic of the developed stochastic multiscale method for porous media flow.



Fig. 5. Logarithm of the permeability field from the top layer of the 10th SPE model, which is defined on 60 � 220 fine grid.

Fig. 6. Contour plots of the x-velocity component for various meshes: (a) 60 � 220 fine-scale grid, (b) 30 � 110 coarse grid, (c) 15 � 55 coarse grid, (d)
10 � 44 coarse grid, and (e) 6 � 22 coarse grid.
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well with the fine-scale solution, with the two results being quite difficult to distinguish visually. As a direct measure of the
error in the computed velocity field, we consider the L2-norm: kuk2 ¼ ð

R
D u � udxÞ1=2, where the corresponding relative error

is given as d(u) = kuref � umsk/kurefk. The result is given in Table 1. In general, the error is larger with coarser grid which is
possibly due to some large local error in the high permeability region where the velocity changes quickly.



Fig. 7. Contour plots of the y-velocity component for various meshes: (a) 60 � 220 fine-scale grid, (b) 30 � 110 coarse grid, (c) 15 � 55 coarse grid, (d)
10 � 44 coarse grid, and (e) 6 � 22 coarse grid.

Table 1
Relative errors for various coarse grids in Example 1.

Errors 30 � 110 15 � 55 10 � 44 6 � 22

d(u) 0.112 0.159 0.170 0.234
d(S) 0.025 0.049 0.067 0.124
d(F) 0.0033 0.0019 0.0101 0.0165

Fig. 8. Contour plots of saturation at 0.4 PVI: (a) 60 � 220 fine-scale grid, (b) 30 � 110 coarse grid, (c) 15 � 55 coarse grid, (d) 10 � 44 coarse grid, and (e)
6 � 22 coarse grid.
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However, for reservoir simulation the most crucial factor is the transport properties of a velocity field. That is, a large local
error in the velocity field may not be crucial as long as the overall transport properties are correct. Therefore, we give the
contour plots of the saturation at time 0.4 PVI for various coarse grids in Fig. 8. The four multiscale results compare very well
with the reference solution. To assess the accuracy of the transport properties, we measure the relative difference in the sat-
uration profile at a given time: dðSÞ ¼ ð

R
D jSref � Smsj2dxÞ1=2

=ð
R

D jSref j2dxÞ1=2. The result is given in Table 1. It is seen that
although the corresponding velocity error is larger for the same coarse grid, the saturation error is significantly smaller.



Fig. 9. Water cut curves for various coarse grids.

Table 2
Computational time (in seconds) for fine and various coarse grids in Example 1. The fine scale solver (single-scale mixed
FEM solver) is the column corresponding to a grid of 60 � 220.

# Processor 60 � 220 30 � 110 15 � 55 10 � 44 6 � 22

1 50 120 73 60 55
2 44 76 44 38 33
4 42 53 33 30 26
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Next, we consider the water cut, which is shown in Fig. 9. Once again, the results compare well with the reference solu-
tion. Here, we measure the maximum error as d(F) = maxtP0jFref(t) � Fms(t)j. The result is shown in Table 1, where the error is
quite small. Note that this is a quite strict measure, since the water cut curves tend to be steep right after breakthrough, and
thus a small deviation in breakthrough time may give a large value in the error measure.

Finally, we want to comment on the computational cost of the multiscale method. The result is shown in Table 2. If only
one processor is used, the computational cost of the MxHMM is comparable to that of the fine scale solver. In particular,
when the coarse-scale mesh has nearly the same resolution as the fine mesh, the computational cost is even higher. How-
ever, as discussed in [18], the target of multiscale methods is not aimed at solving only one single elliptic equation such as
the current single-phase flow problem, but at multiphase flow simulations where multiple solutions of elliptic problems are
needed. In this case, we do not need to solve the fine-scale problem at each time step. Instead, we only need to reconstruct
the fine-scale velocity using the initial coarse-scale solution with adaptive simulation algorithm [10,11,13,14,18]. This is an
important problem and we would like to discuss the extension of our method to multi-phase flows in a separate work while
keeping the current presentation focus on stochastic simulation. It should also be noted that our method is almost trivial to
parallelize. The results when using multiple processors are also shown in Table 2. It is seen that the computation time of the
fine scale solver does not change significantly when increasing the number of processors. On the other hand, the computa-
tion time for the MxHMM reduces. This reduction is noticeable for very coarse grids, e.g. nearly 50% reduction on four pro-
cessors for the grid [6 � 22] versus the grid [60 � 220]. This is possible because we can solve each subgrid problem in parallel
and the size of the global linear system of equations is also small. It should be noted that although the overall computation
time of MxHMM method using 4 processors on coarse grid [6 � 22] is less than that of solving the fine-scale model directly,
the computational speedup remains moderate.

Overall, through this example, it is shown that the introduced multiscale method is quite robust and accurate for different
mesh discretizations.
5.2. Simulation in a realization sample from a random permeability field

In this section, we consider only a sample realization from a random permeability field, which can be considered as a
deterministic run at a collocation point in a stochastic simulation. The permeability is defined on a 100 � 100 fine-scale grid,
which is shown in Fig. 10. Flow is induced from left-to-right with Dirichlet boundary conditions �p ¼ 100 on {x1 = 0}, �p ¼ 0 on



Fig. 10. Logarithm of the permeability field from one sample of a log-normal permeability filed defined on 100 � 100 fine-scale grid.

Fig. 11. Contour plots of saturation at 0.4 PVI: for (a) 100 � 100 fine-scale grid and (b) 25 � 25 coarse grid.

Table 3
Relative errors for various coarse grids in Example 2.

Errors 50 � 50 25 � 25 20 � 20 10 � 10

d(u) 0.060 0.156 0.183 0.324
d(S) 0.019 0.065 0.089 0.182
d(F) 0.0017 0.0059 0.0149 0.0079
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{x1 = 100} and no-flow homogeneous Neumann boundary conditions on the other two edges. We also impose zero initial
condition for saturation S(x,0) = 0 and boundary condition S(x, t) = 1 on the inflow boundary {x1 = 0}. The reference solution
is again taken from the single-scale mixed finite element on the fine-scale grid directly. All the errors are defined the same as
before.

The saturation plot at time 0.4 PVI is shown in Fig. 11 which compares well with the reference solution. The relative
errors are shown in Table 3. We note the relatively small saturation errors compared with the large velocity errors, which



Fig. 12. Water cut curves for various coarse grids.
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again confirms that the large local velocity errors may not reflect the overall accuracy of the saturation results as long as the
multiscale method captures the major feature of the underlying permeability field.

Water cut curves are shown in Fig. 12 and the maximum error is given in Table 3. All the water cut curves are visually
nearly the same. The two deterministic numerical examples successfully validate the introduced multiscale model. Since the
stochastic multiscale framework only requires repeated solution of the deterministic problems at different collocation
points, it is expected to also have accurate statistics of the solution in the stochastic simulation as shown in the next
example.

5.3. Simulation in random permeability field

In the last two examples, we have successfully verified the accuracy of our newly developed multiscale solver. In this
example, we investigate the statistical properties of the transport phenomena in random heterogeneous porous media.
The domain of interest is the unit square [0,1]2. Flow is still induced from left-to-right with Dirichlet boundary conditions
�p ¼ 1 on fx1 ¼ 0g; �p ¼ 0 on {x1 = 1} and no-flow homogeneous Neumann boundary conditions on the other two edges. We
also impose zero initial condition for saturation S(x,0) = 0 and boundary condition S(x, t) = 1 on the inflow boundary {x1 = 0}.

The log-permeability is taken as zero mean random field with a separable exponential covariance function
Covðx; yÞ ¼ r2 exp � jx1 � y1j
L1

� jx2 � y2j
L2

� �
; ð63Þ
where L1 and L2 are the correlation lengths in x and y direction, respectively. r is the standard deviation of the random field.
The K–L expansion is used to parameterize the field as
YðxÞ ¼ logðKðxÞÞ ¼
XN

i¼1

ffiffiffiffi
ki

p
/iðxÞYi; ð64Þ
where the eigenvalues ki, i = 1,2, . . ., and their corresponding eigenfunctions /i, i = 1,2, . . ., can be determined analytically as
discussed in [37]. Different probability distributions can be chosen for Yi. The effects of log permeability with uniform, beta
and Gaussian distributions on the mean and standard deviation of the output were investigated in [38], where the results
showed that the three distributions had close peak values of standard deviation. Therefore, without losing the main feature
of the output uncertainty, here Yi are assumed as i.i.d. uniform random variables on [�1, 1].

In this problem, the fine-scale permeability is defined on 64 � 64 grid and the coarse grid is taken as 8 � 8. For compar-
ison, the reference solution is taken from 106 MC samples, where each direct problem is solved using the fine-scale solver.
The stochastic problem is solved using HDMR, where the solution of each deterministic problem at the collocation points is
from the multiscale solver. In this way, the accuracy of both multiscale solver and HDMR can be verified. In our previous
work [44], the effects of the correlation length and standard deviation have been studied thoroughly. Thus, here we will
fix the standard deviation to r2 = 1.0 and investigate the effect of the anisotropy of the random field.



(a)

(c) (d)

(b)

Fig. 13. Mean and standard deviation of saturation at 0.2 PVI for isotropic random field. Top: mean (a) and standard deviation (b) form HDMR. Bottom:
comparison of mean (c) and standard deviation (d) between MC and HDMR near the saturation front.
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5.3.1. Isotropic random field
In this problem, we take L1 = L2 = 0.1. Due to the slow decay of the eigenvalues, Eq. (64) is truncated after 100 terms.

Therefore, the stochastic dimension is 100. The problem is solved with HDMR where each sub-problem is solved through
ASGC. We take e = 10�6, h1 = 5 � 10�5 and h2 = 10�4.

In Fig. 13, we compare the mean and standard deviation at 0.2 PVI. It is interesting to note that although the permeability
field shows heterogeneity for different realizations, the mean saturation is the same as the solution with homogeneous mean
permeability field. This behavior is called ‘‘heterogeneity-induced dispersion’’ where the heterogeneity smoothes the water
saturation profile in the ensemble sense. Our results again confirms this phenomenon, which was first investigated in [32]
through method of moment equations. The figure also indicates that higher water saturation variations are concentrated
near displacement fronts, which are areas of steep saturation gradients. Therefore, the comparisons between the MC and
HDMR results are only shown around the displacement fronts on the bottom two plots in Fig. 13. It is seen that the solutions
from HDMR compare quite well with the Monte Carlo results. The convergence of HDMR is shown in Table 4, where the nor-
malized error is defined the same as before with MC results as the reference solution. Ni denotes the number of important
dimensions and Nc denotes the total number of component functions. The expansion order of HDMR for all three cases is 2.
For conventional HDMR, the total number of component functions is 5051. However, by using adaptivity, Nc is reduced to
1047 which clearly demonstrates the advantage of our methods. From the table, it is seen that the results are indeed quit
accurate despite the fact that 64-fold upscaling is used to solve the deterministic problem and adaptive methods are used
to solve the stochastic problem.

Next, we demonstrate the interpolatory properties of the HDMR method. As mentioned before, one of the advantages of
HDMR is that it can serve as a surrogate model for the original problem. Realization of the saturation for arbitrary random
input can be obtained through HDMR. To verify this property, we randomly generate one input vector and reconstruct the
result from HDMR. At the same time, we run a deterministic problem with the fine-scale model and the same realization of



Table 4
Convergence of HDMR with different h1 at 0.2 PVI for isotropic random field.

h1 Ni Nc # Points Error mean Error std.

1 � 10�3 2 102 1694 7.47 � 10�4 4.38 � 10�2

1 � 10�4 27 452 34379 5.69 � 10�4 2.06 � 10�2

5 � 10�5 44 1047 77988 5.10 � 10�4 6.66 � 10�3

Fig. 14. Prediction of the saturation profile using HDMR and the solution of the deterministic fine-scale problem with the same input for isotropic random
field. Left: saturation at 0.2 PVI from direct simulation, Right: saturation at 0.2 PVI reconstructed from HDMR.

Fig. 15. Isotropic random field: (a) PDF of the saturation at point (0.2, 0) and 0.2 PVI, (b) CDF of the saturation at point (0.2,0) and 0.2 PVI.
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the random input vector. The comparison of these results are shown in Fig. 14. In addition, in Fig. 15, we also plot the prob-
ability density function (PDF) and cumulative distribution function (CDF) at point (0.2, 0) where it has the highest standard
deviation as indicated from Fig. 13(b). These results indicate that the corresponding HDMR approximations are indeed very
accurate. Therefore, we can obtain any statistics from this stochastic reduced-order model, which is an advantage of the cur-
rent method over the MC method.

Similar results at 0.4 PVI are also given in Figs. 16–18, respectively. It is noted that the standard deviation of the saturation
becomes larger at later time as is seen from the wider strip of the non-zero regions in the contour maps at 0.4 PVI in Fig. 16.
With the increase of the standard deviation, more collocation points are needed to capture the overall uncertainty. Indeed,
there are 1229 component functions and 104,662 collocation points in this case. From Fig. 17, it is seen that the saturation
front exhibits a much more significant variation due to the larger standard deviation. Similarly, in Fig. 18, we plot the PDF



(a)

(c) (d)

(b)

Fig. 16. Mean and standard deviation of saturation at 0.4 PVI for isotropic random field. Top: mean (a) and standard deviation (b) form HDMR. Bottom:
comparison of mean (c) and standard deviation (d) between MC and HDMR near the saturation front.

Fig. 17. Prediction of the saturation profile using HDMR and the solution of the deterministic fine-scale problem with the same input for isotropic random
field. Left: saturation at 0.4 PVI from direct simulation, Right: saturation at 0.4 PVI reconstructed from HDMR.
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and CDF at point (0.4,0) where the highest standard deviation happens. It is noted that the spread of the PDF at 0.4 PVI is
wider than that of 0.2 PVI which again indicates the larger variation of the saturation at this time step. Thus, it is more dif-
ficult to predict the uncertainty with the simulation time increases.



(a) (b)

Fig. 18. Isotropic random field: (a) PDF of the saturation at point (0.4, 0) and 0.4 PVI and (b) CDF of the saturation at point (0.4, 0) and 0.4 PVI.

(a)

(c) (d)

(b)

Fig. 19. Mean and standard deviation of saturation at 0.2 PVI for anisotropic random field. Top: mean (a) and standard deviation (b) form HDMR. Bottom:
comparison of mean (c) and standard deviation (d) between MC and HDMR near the saturation front.
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Table 5
Convergence of HDMR with different h1 at 0.2 PVI for anisotropic random field.

h1 Ni Nc # Points Error mean Error std.

1 � 10�3 8 79 6199 1.14 � 10�3 4.69 � 10�2

1 � 10�4 38 754 72243 6.95 � 10�4 1.35 � 10�2

5 � 10�5 45 1044 96999 6.51 � 10�4 1.01 � 10�2

Fig. 20. Prediction of the saturation profile using HDMR and the solution of the deterministic fine-scale problem with the same input for anisotropic
random field. Left: saturation at 0.2 PVI from direct simulation, Right: saturation at 0.2 PVI reconstructed from HDMR.

Fig. 21. Anisotropic random field: (a) PDF of the saturation at point (0.2,0) and 0.2 PVI, (b) CDF of the saturation at point (0.2,0) and 0.2 PVI.
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5.3.2. Anisotropic random field
In this problem, we take L1 = 0.25, L2 = 0.1. Due to the increase of the correlation length in the x direction, Eq. (64) is trun-

cated after 50 terms. Therefore, the stochastic dimension is taken as 50.
We first solve this problem at time 0.2 PVI using HDMR with ASGC. We take e = 10�6, h1 = 5 � 10�5 and h2 = 10�4. The

results are shown in Fig. 19. It is interesting to note that the shape of contours is nearly the same as that of the isotropic
random field. Only the values of standard deviation are different. The introduction of anisotropy has the effect of increasing
the output uncertainty. The convergence of HDMR is shown in Table 5. Again, the HDMR results compare very well with the
reference solution. According to our previous numerical results in [44], larger uncertainty requires more expansion terms.
Indeed, more expansion terms and collocation points are needed compared with that of the isotropic case. In addition,
the highest HDMR expansion order is 3. There are 3 third-order component functions, which indicates the existence of



(a)

(c) (d)

(b)

Fig. 22. Mean and standard deviation of saturation at 0.4 PVI for anisotropic random field. Top: mean (a) and standard deviation (b) form HDMR. Bottom:
comparison of mean (c) and standard deviation (d) between MC and HDMR near the saturation front. Here each sub-problem is solved using sparse grid
based on Gauss–Legendre quadrature rule.

Table 6
Convergence of HDMR with different h1 at 0.4 PVI for anisotropic random field.

h1 Ni Nc Order # Points Error mean Error std.

1 � 10�3 10 96 2 4126 1.32 � 10�3 5.17 � 10�2

1 � 10�4 38 763 3 54925 7.00 � 10�4 4.10 � 10�2

5 � 10�5 45 1087 3 82407 6.40 � 10�4 3.21 � 10�2

1 � 10�5 50 2050 4 218136 2.97 � 10�4 1.97 � 10�2
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higher-order cooperative effects among the inputs. The reconstruction of the saturation profile is shown in Fig. 20. The PDF
and CDF at point (0.2,0) are shown in Fig. 21.

Finally, we show that HDMR is indeed a versatile method where each sub-problem can be solved by any stochastic meth-
od. Therefore, we solve the problem at 0.4 PVI using HDMR where each sub-problem is solved with sparse grid based on
Gauss–Legendre quadrature rule instead of ASGC. A level three sparse grid is chosen for each sub-problem. h1 is chosen
as 1 � 10�5. The results are shown in Fig. 22. The convergence of HDMR is given in Table 6. In this extreme case, all the
50 dimensions are considered as important and the maximum expansion order is 4. This again is consistent with our pre-
vious results in [44]. Higher-order terms are needed to capture the large variability. Without adaptivity, there are
251,176 component functions for a 4th order conventional HDMR. The advantage of adaptive HDMR is more impressive
in this case. We also solve this problem directly with a 50-dimensional sparse grid based on Gauss–Legendre quadrature
rule. The results from levels 2 and 3 sparse grids are given in Fig. 23. Since the mean saturations are nearly the same, we
only show the comparison between standard deviations. For level 2 sparse grid, the number of collocation points is 5301



Fig. 23. Standard deviation of saturation at 0.4 PVI for anisotropic random field using 50-dimensional sparse grid based on Gauss–Legendre rule:
comparison of standard deviation between MC and sparse grid level 2 (left) and 3 (right) near the saturation front.

Fig. 24. Standard deviation of the saturation at the point, where the largest value occurs, obtained from MC simulations versus the number of realizations.
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with the mean error 8.31 � 10�4 and std error 4.38 � 10�2. However, when increasing the sparse grid to level 3 with a total
number of 192201 collocation points, the mean error increases to 1.90 � 10�3 and std error increases to 7.09 � 10�2. In other
words, the direct sparse grid method fails to converge. It is computationally prohibiting to increase the sparse grid level to 4
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since it would require 5,402,401 collocation points. The failure of convergence is due to the steep saturation gradient near
the displacement front. For such problems, it is widely known that the polynomial based quadrature method has difficulty in
convergence. From the results shown, it seems that the adaptive HDMR can reduce the irregularity of the stochastic space
through decomposition of the dimensions. However, a higher order expansion may be needed at a significant increase in the
computational cost.

Finally, we want to comment on the computational time of this example. First, in Fig. 24, the convergence of standard
deviation of the saturation at one point with the number of MC simulations is given. The points are chosen at the place where
the largest standard deviation occurs and they are different for different cases. From the figure, it is seen that at least 105 MC
samples are needed in order to achieve statistical convergence. However, there are still some small oscillations after it. As is
well known, the MC convergence rate is M�1/2, therefore, to ensure a good comparison with HDMR, we use 106 samples
eventually. It took about 19 h on 60 processors while the average computational time for HDMR is 5 h on the same number
of processors in such a high-dimensional case. It is also noted from the figure that much more points are needed to achieve
statistical convergence in the anisotropic case which partially explains the larger variations of saturation as was seen earlier.
Moreover, an interesting observation is that the shapes of the convergence plots are nearly the same at the two time instants
for the same random input. This phenomenon suggests that although the convergence rate of MC is independent of the num-
ber of stochastic dimensions, it does depend on the regularity of the stochastic input space. In general, more MC samples are
needed for a stochastic space which is not smooth as is seen from the case of the anisotropic random field.
6. Conclusions

In the first part of this paper, a new multiscale methodology using the mixed finite element method is developed for the
solution of elliptic equation arising from the heterogeneous porous media flow problem. This multiscale methodology is
based on the framework of the heterogeneous multiscale method. A novel boundary condition for the local cell problem
is proposed which gives more realistic flow conditions across a coarse-element interface. In addition, a reconstruction meth-
od for the fine-scale velocity is also proposed, which ensures the continuity of the mass at both local and global scales. The
first two numerical examples considered verify the accuracy of the new method. However, as a first step towards this new
method, only a single-phase flow and transport problem are considered. Our ongoing research includes investigating the
multi-phase flow and incorporating the multiscale source terms and well modeling.

In the second part of this paper, we considered uncertainty quantification when the permeability field is modeled as a
random field. The newly developed multiscale method is used as a direct solver within the framework of ASGC and HDMR.
Our numerical results in Example 3 compare well with the MC results with fine-scale solvers, which again verifies the accu-
racy of both multiscale and HDMR methods. Our study confirms the interesting phenomenon that the introduction of per-
meability heterogeneity leads to the heterogeneity-induced dispersion. The obtained results also indicate that the HDMR
expansion can serve as an accurate surrogate model for the underlying stochastic problem.

The input uncertainty in the permeability considered in the current work is defined from an analytical KL expansion with
known covariance which only represents two-point statistics. In our recent work, we are considering data-driven stochastic
input models which can generate more realistic permeability fields with higher-order statistics. This work is reported in a
separate paper [63]. The model from [63] can be used as an alternate input into the developed stochastic multiscale frame-
work. Research quantifying the uncertainty in such cases is in progress.
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