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A computational methodology is developed to address the solution of high-dimensional
stochastic problems. It utilizes high-dimensional model representation (HDMR) technique
in the stochastic space to represent the model output as a finite hierarchical correlated
function expansion in terms of the stochastic inputs starting from lower-order to higher-
order component functions. HDMR is efficient at capturing the high-dimensional input–
output relationship such that the behavior for many physical systems can be modeled to
good accuracy only by the first few lower-order terms. An adaptive version of HDMR is also
developed to automatically detect the important dimensions and construct higher-order
terms using only the important dimensions. The newly developed adaptive sparse grid col-
location (ASGC) method is incorporated into HDMR to solve the resulting sub-problems. By
integrating HDMR and ASGC, it is computationally possible to construct a low-dimensional
stochastic reduced-order model of the high-dimensional stochastic problem and easily
perform various statistic analysis on the output. Several numerical examples involving ele-
mentary mathematical functions and fluid mechanics problems are considered to illustrate
the proposed method. The cases examined show that the method provides accurate results
for stochastic dimensionality as high as 500 even with large-input variability. The effi-
ciency of the proposed method is examined by comparing with Monte Carlo (MC)
simulation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Over the past few decades there has been considerable interest among the scientific community in studying physical pro-
cesses with stochastic inputs. These stochastic input conditions arise from uncertainties in boundary and initial conditions as
well as from inherent random material heterogeneities. Material heterogeneities are usually difficult to quantify since it is
physically impossible to know the exact property at every point in the domain. In most cases, only a few statistical descrip-
tors of the property variation or the property variation in small test regions can be experimentally determined. This limited
information necessitates viewing the property variation as a random field that satisfies certain statistical properties/corre-
lations. Several techniques, such as Karhunen–Loève (K-L) expansion [1] and model reduction methods [2,3] have been pro-
posed to generate these stochastic input models. This naturally results in describing the physical phenomena using
stochastic partial differential equations (SPDEs).
. All rights reserved.
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In the past decade, there has been tremendous progress in posing and solving SPDEs with the methods used usually clas-
sified into three major groups. The first group refers to sampling methods. The most traditional one is the Monte Carlo (MC)
method. Its convergence rate does not depend on the number of independent input random variables. Furthermore, MC
methods are very easy to implement given a working deterministic code. However, the number of realizations required
to acquire good statistics is usually quite large. The second group of methods consists of moment/perturbation methods,
e.g. KL-based moment-equation approach [4–6]. These methods can deal with large number of inputs. However, they are
limited to small fluctuations and do not provide high-order statistics of the solution. Significant emphasis is given recently
on the non-perturbative methods. The first approach in this group for quantifying uncertainty is the spectral stochastic finite
element method (SSFEM) [1] based on generalized polynomial chaos expansions (gPC) [7]. In this method, we project the
dependent variables of the model onto a stochastic space spanned by a set of complete orthogonal polynomials and then
a Galerkin projection scheme is used to transform the original stochastic problem into a system of coupled deterministic
equations which can be solved by the finite element method. The gPC was successfully applied to model uncertainty prop-
agation in random heterogenous media [8–12]. Error bounds and convergence studies [13] have shown that these methods
exhibit fast convergence rates with increasing orders of expansions. Although this method can deal with large variations of
the property, the coupled nature of the resulting equations for the unknown coefficients in the spectral expansion makes the
solution of the stochastic problem extremely complex as the number of stochastic dimensions and/or the number of expan-
sion terms increase, the so called curse of dimensionality. In fact, computational complexity of the problem increases combi-
natorially with the number of stochastic dimensions and the number of expansion terms. In addition, it is required to
develop a stochastic simulator, which is a non-trivial task especially if the underlying PDEs have complicated nonlinear
terms. Therefore, this method is often limited to a small number of inputs (1–10) .

There have been recent efforts to couple the fast convergence of the Galerkin methods with the decoupled nature of MC
sampling, the so called stochastic collocation method based on sparse grids [14–19]. Hereafter, this method is referred as
conventional sparse grid collocation (CSGC) method. This framework represents the stochastic solution as a polynomial
approximation. This interpolant is constructed via independent function calls to the deterministic problem at different inter-
polation points which are selected based on the Smolyak algorithm [20]. This method is also applied to model processes in
random heterogenous media [2,3,21,22]. However, there are several disadvantages. As is well known, the global polynomial
interpolation cannot resolve local discontinuity in the stochastic space. Its convergence rate still exhibits a logarithmic
dependence on the dimension. For high-dimensional problems, a higher-interpolation level is required to achieve a satisfac-
tory accuracy. However, at the same time, the number of collocation points required increases exponentially for high-dimen-
sional problems (>10) as shown in Fig. 1. Therefore, its computational cost becomes quickly intractable. This method is still
limited to a moderate number of random variables (5–15). To this end, Ma and Zabaras [23] extended this methodology to
adaptive sparse grid collocation (ASGC). This method utilizes local linear interpolation and uses the magnitude of the hier-
archical surplus as an error indicator to detect the non-smooth region in the stochastic space and thus place automatically
more points around this region. This approach results in further computational gains and guarantees that a user-defined er-
ror threshold is met. In [23], it is shown that the ASGC can successfully resolve stochastic discontinuity problems and solve
stochastic elliptic problems up to 100 dimensions when the weights of each dimension are highly anisotropic and thus when
the ASGC places more points only along the first few important dimensions. However, it is also shown in the paper that when
the importance of each dimension weighs equally, ASGC cannot solve the problem accurately even with a moderate (21) sto-
chastic dimensionality. In this case, the effect of ASGC is nearly the same as of the CSGC and thus the convergence rate dete-
riorates. As is well known, in realistic random heterogeneous media often we deal with a very small correlation length and
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Fig. 1. Number of collocation points versus interpolation level for the conventional sparse grid collocation (CSGC) method.
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this results in a rather high-dimensional stochastic space with nearly the same weights along each dimension. In this case, all
the previously mentioned stochastic methods are obviously not applicable.

These modeling issues for high-dimensional stochastic problems motivate the use of the so called ‘‘High-Dimensional
Model Representation” (HDMR) technique. Hereafter, this method is referred as conventional HDMR. It is a general set of
quantitative assessment and analysis tools for capturing the high-dimensional relationships between sets of input and out-
put model variables. It was originally developed as a methodology to create an efficient fully equivalent operational model of
the original chemical systems [24–29]. It expresses the model output as an additive hierarchical superposition of correlated
functions with increasing numbers of input variables, i.e. 1,2, . . . , up to the total number of input variables. A systematic
mapping procedure between the inputs and outputs is prescribed to reveal the hierarchy of correlations among the input
variables. At each new level of HDMR, higher-order correlated effects of the input variables are introduced. If these high-
er-order correlated effects between the input variables have negligible effect upon the output, the HDMR approximation
is accurate enough by using only lower-order (usually up to the third-order) component functions. This is the case for most
realistic physical systems and is the ansatz that the HDMR is based upon. Depending on the way that one determines the
hierarchical component functions in HDMR, there are particularly two types of HDMR: ANOVA-HDMR and CUT-HDMR
[24]. ANOVA-HDMR is the same as the analysis of variance (ANOVA) decomposition used in statistics and is useful for mea-
suring the contributions of variance of each component function to the overall variance and therefore for computing the glo-
bal sensitivity [30]. It involves high-dimensional integration and thus is computationally expensive. On the other hand, the
CUT-HDMR expansion is a finite exact representation of the model output in the hyperplane passing through a reference
point in the input variable space, which is different from gPC that has infinite terms. It only involves function evaluations
at the sample points and is more computationally efficient than ANOVA-HDMR. Therefore, it is our focus in this work.

The model output can be considered as a function taking value over the parameter space supported by the input variables.
Therefore, it is also a multivariate function approximation/interpolation method as well as a means to analyze the relevant
statistics of the random output, which is the same idea as stochastic collocation method where the solution to the SPDEs is
regarded as a stochastic function in the stochastic input space. It is thus straightforward to apply CUT-HDMR in the random
space to construct the stochastic input–output mapping. The most important aspect of this method is the capability to find a
way to numerically represent each component function of HDMR. In Ref. [31], CUT-HDMR is applied to a transport model to
represent the stochastic response and MC analysis is used on the obtained approximation to obtain statistics. However, each
CUT-HDMR component function was numerically represented as a low-dimensional look-up table over its variables. To ob-
tain an approximate value, one needs to search and interpolate in the table. In [32,33], CUT-HDMR is derived from a Taylor
expansion and is used to find moments of the solution using the so called moment-based quadrature rule in stochastic
mechanics. Although the name ‘‘dimension reduction method” is used in these papers, it is another form of HDMR. Later,
the same author applied this method to fracture and reliability analysis, where component functions are interpolated using
tensor product Lagrange polynomials and again MC analysis is used on the obtained approximation to obtain statistics
[34,35]. The author in [36] also applied CUT-HDMR to reliability analysis however the interpolant is constructed through
moving least squares (MLS) approximation which is only limited up to three dimensions. Most of the above applications
approximate each component function on a tensor-product uniform sampling space thus they are very expensive and not
very accurate implementations. In addition, all the previous applications are still limited to relatively low-number of sto-
chastic dimensions (<12).

In Ref. [37], the authors have applied CUT-HDMR, under the name ‘‘Anchored-ANOVA”, to find the mean and variance of
the solution using multi-element probabilistic collocation method and integrating the resultant HDMR expansion term by
term. In Ref. [38], the authors have applied the same method for the computation of high-dimensional integrals using quad-
rature schemes with applications to finance. They also developed a dimension-adaptive version of HDMR to find the impor-
tant component functions and related it with the anisotropic sparse grid method. Motivated by their work, we develop a
general framework to combine the strength from both HDMR and ASGC and apply it to uncertainty quantification. We first
redefine the way to compute the error indicator in the formulation of ASGC. The use of the magnitude of the hierarchical
surplus as the error indicator is too sharp and may result in non-terminating algorithms. The new error indicator incorpo-
rates the information from both the basis function and the surplus. This guarantees that the refinement will stop at a suf-
ficient interpolation level. Then HDMR is used to decompose the high-dimensional stochastic problem into several lower-
dimensional sub-problems. Each low-dimensional sub-problem is solved by ASGC in a locally-adaptive way within only re-
lated dimensions. In this way, an efficient low-dimensional stochastic reduced-order model is constructed and any model
output in the stochastic space can be interpolated. By using ASGC, the interpolation of component functions is done effi-
ciently by summing the corresponding hierarchical surplus and basis function as compared with that of using a numerical
table. Mean and variance can also be obtained analytically through integrating the basis functions without any MC analysis.
In addition, the ASGC provides a linear combination of tensor products chosen in such a way that the interpolation error is
nearly the same as for full-tensor product (numerical table) in higher dimensions. In practice, HDMR is often truncated into a
lower-order representation. However, for a very large stochastic dimension (>100), even second-order expansion will have
too many component functions. For example, 125,251 component functions are needed for a second-order expansion of a
500-dimensional problem. Therefore, we need to find a way to construct only the important component functions. Motivated
by the work in [38], in this paper, we also develop a dimension-adaptive version of HDMR to detect the important compo-
nent functions. This is defined in two steps: First, the first-order HDMR is constructed and a weight associated with each
term is defined to identify the most important dimensions. Then, higher-order components functions are constructed which
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consist only of these important dimensions. This method to our knowledge is the first approach which can solve high-dimen-
sional stochastic problems by reducing the dimensions from truncation of HDMR and resolve low-regularity by local adap-
tivity through ASGC. It is noted here that the adaptivity in our paper is different from that used in [38]. The definition of the
error indicator is not the same. The authors in [38] did not identify the important dimensions and thus there is a significant
computational overhead in finding the important component functions for high-dimensional problems. It is also noted that
in [33,37], the CUT-HDMR is written in an explicit form which is not suitable for adaptive construction. On the other hand, in
our paper, a recursive form of an HDMR component function is introduced which is the basis for our adaptive
implementation.

This paper is organized as follows: In the next section, the mathematical framework of stochastic PDEs is formulated. In
Section 3, the ASGC method for solving PDEs is briefly reviewed. In Section 4, we use HDMR to introduce a new method for
solving SPDEs. The numerical examples are given in Section 5. Finally, concluding remarks are provided in Section 6.

2. Problem definition

In this section, we follow the notation in [23]. Let us define a complete probability space ðX;F ;PÞ with sample space X
which corresponds to the outcomes of some experiments, F � 2X is the r-algebra of subsets in X and P : F ! ½0;1� is the
probability measure. Also, let us define D as a d-dimensional bounded domain D � Rd ðd ¼ 1;2;3Þ with boundary @D. We
are interested in finding a stochastic function u : X� D! R such that for P-almost everywhere (a.e.) x 2 X, the following
holds:
Lðx;x; uÞ ¼ gðx;xÞ; 8x 2 D; ð1Þ
and
Bðx; uÞ ¼ hðxÞ; 8x 2 @D; ð2Þ
where x ¼ ðx1; . . . ; xdÞ are the coordinates in Rd;L is a differential operator, and B is a boundary operator. The operators L and
B and the terms g and h, can be assumed random. We assume that the boundary has sufficient regularity and that g and h are
properly defined such that the problem in Eqs. (1) and (2) is well-posed for P-a.e. x 2 X.

2.1. The finite-dimensional noise assumption and the Karhunen–Loève expansion

We employ the ‘finite-dimensional noise assumption’ [14] to approximate any second-order stochastic process with a fi-
nite-dimensional representation. One such choice is the Karhunen–Loève (K-L) expansion [1]. For example, let the force term
gðx;xÞ be a second-order stochastic process, and its covariance function be Rðx1; x2Þ, where x1 and x2 are spatial coordinates.
By definition, the covariance function is real, symmetric, and positive definite. All its eigenfunctions are mutually orthonor-
mal and form a complete set spanning the function space to which gðx;xÞ belongs. Then the truncated K-L expansion takes
the following form:
gðx;xÞ ¼ E½gðxÞ� þ
XN

i¼1

ffiffiffiffi
ki

p
/iðxÞYiðxÞ; ð3Þ
where fYiðxÞgN
i¼1 are uncorrelated random variables. If the process is a Gaussian process, then they are standard identically

independent Nð0;1Þ Gaussian random variables. Also, /iðxÞ and ki are the eigenfunctions and eigenvalues of the correlation
function, respectively. They are the solutions of the following eigenvalue problem:
Z

D
Rðx1; x2Þ/iðx2Þdx2 ¼ ki/iðx1Þ: ð4Þ
The number of terms needed to approximate a stochastic process depends on the decay rate of the eigenvalues. Generally, a
higher-correlation length would lead to a rapid decay of the eigenvalues.

Following a decomposition such as the K-L expansion, the random inputs can be characterized by a set of N random vari-
ables, e.g.
Lðx;x; uÞ ¼ Lðx;Y1ðxÞ; . . . ; YNðxÞ; uÞ;
gðx;xÞ ¼ gðx; Y1ðxÞ; . . . ;YNðxÞÞ: ð5Þ
Hence, by using the Doob–Dynkin lemma [39], the solution of Eqs. (1) and (2) can be described by the same set of random
variables fYiðxÞgN

i¼1, i.e.
uðx;xÞ ¼ uðx; Y1ðxÞ; . . . ;YNðxÞÞ: ð6Þ
Thus, the use of the spectral expansion guarantees that the finite-dimensional noise assumption is satisfied and effectively
reduces the infinite probability space to a N-dimensional space.

When using the K-L expansion, we here assume that we obtain a set of mutually independent random variables. The issue
of non-independent random variables can be resolved by introducing an auxiliary density function [16]. In this work, we
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assume that fYiðxÞgN
i¼1 are independent random variables with probability density functions qi; i ¼ 1; . . . ;N. Let Ci be the im-

age of Yi. Then
qðYÞ ¼
YN
i¼1

qiðYiÞ; 8Y 2 C; ð7Þ
is the joint probability density of Y ¼ ðY1; . . . ;YNÞ with support
C � C1 � C2 � � � � � CN 2 RN: ð8Þ
Then the problem in Eqs. (1) and (2) can be restated as: Find the stochastic function u : C� D! R such that
Lðx;Y; uÞ ¼ gðx;YÞ; ðx;YÞ 2 D� C; ð9Þ
subject to the corresponding boundary conditions
Bðx;Y; uÞ ¼ hðx;YÞ; ðx;YÞ 2 @D� C: ð10Þ
We assume without loss of generality that the support of the random variables Yi is Ci ¼ ½0;1� for i ¼ 1; . . . ;N and thus the
bounded stochastic space is a N-hypercube C ¼ ½0;1�N , since any bounded stochastic space can always be mapped to the
above hypercube.

The original infinite-dimensional stochastic problem is now restated as a finite-dimensional problem. Then we can ap-
ply any stochastic method in the random space and the resulting equations become a set of deterministic equations in the
physical space that can be solved by any standard deterministic discretization technique, e.g. the finite element method.
The solution to the above SPDE can be regarded as a stochastic function taking real values in the stochastic space C. This
nature is utilized by the stochastic collocation method which constructs the interpolant of this function in C through the
Smolyak algorithm. However, this method still suffers from high-dimensionality. In the next few sections, a novel dimen-
sion decomposition method is introduced to transform the N-dimensional problem into several low-dimensional sub-
problems.

3. Adaptive sparse grid collocation method (ASGC)

In this section, we briefly review the development of the ASGC strategy. For more details, the interested reader is referred
to [23].

The basic idea of this method is to have a finite element approximation for the spatial domain and approximate the multi-
dimensional stochastic space C using interpolating functions on a set of collocation points fYigk

i¼1 2 C. Suppose we can find a
finite element approximate solution u to the deterministic solution of the problem in Eq. (9), we are then interested in con-
structing an interpolant of u by using linear combinations of the solutions uð�;YiÞ. The interpolation is constructed by using
the so called sparse grid interpolation method based on the Smolyak algorithm [20]. In the context of incorporating adap-
tivity, we have chosen the collocation point based on the Newton-Cotes formulae using equidistant support nodes. The cor-
responding basis function is the multi-linear basis function constructed from the tensor product of the corresponding one-
dimensional functions.

Any function f : D� C! R can now be approximated by the following reduced form:
f ðx;YÞ ¼
X
kik6Nþq

X
j

wi
jðxÞ � ai

jðYÞ: ð11Þ
where the multi-index i ¼ ði1; . . . ; iNÞ 2 NN , the multi-index j ¼ ðj1; . . . ; jNÞ 2 NN and kik ¼ i1 þ � � � þ iN . q is the sparse grid
interpolation level and the summation is over collocation points selected in a hierarchical framework [23]. Here, wi

j is the
hierarchical surplus, which is just the difference between the function value at the current point and interpolation value
from the coarser grid. The hierarchical surplus is a natural candidate for error control and implementation of adaptivity.
However, this error indicator is too sharp and may result in a non-terminating algorithm. We will define a new error indi-
cator later.

After obtaining the expression in Eq. (11), it is also easy to extract the statistics [23]. The mean of the random solution can
be evaluated as follows:
E½f ðxÞ� ¼
X
kik6Nþq

X
j

wi
jðxÞ �

Z
C

ai
jðYÞdY; ð12Þ
where the probability density function qðYÞ is 1 since the stochastic space is a unit hypercube ½0;1�N . As shown in [23], the
multi-dimensional integral is simply the product of the 1D integrals which can be computed analytically. DenotingR
C ai

jðYÞdY ¼ Ii
j, we can rewrite Eq. (12) as
Eq½f ðxÞ� ¼
X
kik6Nþq

X
j

wi
jðxÞ � I

i
j: ð13Þ
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We now define the error indicator as follows:
ci
j ¼

wi
jðxÞ � I

i
j

��� ���
L2ðDÞ

kEkik�N�1½f �kL2ðDÞ
: ð14Þ
Here, the L2 norm is defined in the spatial domain. This error indicator measures the contribution of each term in Eq. (13) to
the integration value (mean) relative to the overall integration value computed from the previous interpolation level. In
addition to the surpluses, it also incorporates information from the basis functions. This makes the error ci

j to decrease to
a sufficient small value for a large interpolation level. Therefore, for a reasonable error threshold, this error indicator guar-
antees that the refinement would stop at a certain interpolation level.

The basic idea of adaptive sparse grid collocation (ASGC) method here is to use the error indicator ci
j to detect the smooth-

ness of the solution and refine the hierarchical basis functions ai
j whose magnitude of satisfies ci

j P e, where e is a predefined
adaptive refinement threshold. If this criterion is satisfied, we simply add the 2N neighbor points of the current point to the
sparse grid [23].

4. High-dimensional model representations (HDMR)

In this section, the basic concepts of HDMR are introduced following closely the notation in [24,25,29,38]. For a detailed
description of the theory applied to deterministic systems, the interesting reader may refer to [25].

Let f ðYÞ : RN ! R be a real valued smooth multivariate stochastic function. Here, it is noted that f(Y) may be also a func-
tion of physical coordinate, f(Y,x). From now on, we will omit x to simplify the notation. HDMR represents f(Y) as a finite
hierarchical correlated function expansion in terms of the input variables as [24,25,29]
f ðYÞ ¼ f0 þ
XN

s¼1

XN

i1<���<is

fi1 ���is ðYi1 ; . . . ;Yis Þ; ð15Þ
where the interior sum is over all sets of s integers i1; . . . ; is, that satisfy 1 6 i1 < is 6 N. This relation means that
f ðYÞ ¼ f0 þ
XN

i¼1

fiðYiÞ þ
X

16i1<i26N

fi1 i2 ðYi1 ;Yi2 Þ þ � � � þ
X

16i1<���<is6N

fi1 ���is ðYi1 ; . . . ;Yis Þ þ � � � þ f12���NðY1; . . . ; YNÞ: ð16Þ
Here, f0 is the zeroth-order component function which is a constant denoting the mean effect. The first-order component
function fiðYiÞ is a univariate function which represents individual contributions to the output f ðYÞ. It is noted that fiðYiÞ
is general a nonlinear function. The second-order component function fi1 i2 ðYi1 ;Yi2 Þ is a bivariate function which describes
the interactive effects of variables Yi1 and Yi2 acting together upon the output f(Y). The higher-order terms reflect the
cooperative effects of increasing number of input variables acting together to impact f. The s-th order component func-
tion fi1 ���is ðYi1 ; . . . ;Yis Þ is a s-dimensional function. The last term f12���NðY1; . . . ;YNÞ gives any residual dependence of all in-
put variables cooperatively locked together to affect the output f(Y) [24,25]. Once all the component functions are
suitably determined, then the HDMR can be used as a computationally efficient reduced-order model for evaluating
the output. This is the same idea as the stochastic collocation method where we also obtain an approximate represen-
tation of f(Y).

Remark 1. The HDMR expansions are based on exploiting the correlation effects of the input variables, which are naturally
created by the stochastic input–output mapping, i.e. the SPDE. It is noted that the term ‘‘correlation” employed here does not
indicate the correlation effects between the input random variables as employed in statistics since in general the random
input variables are independent and thus uncorrelated. Instead, it indicates the impact of these input variables upon the
system output when acting together.

Eq. (15) is often written in a more compact notation [38] as follows:
f ðYÞ ¼
X
u #D

fuðYuÞ; ð17Þ
for a given set u #D, where D :¼ f1; . . . ;Ng denotes the set of coordinate indices and f;ðY;Þ ¼ f0. Here, Yu denotes the juj-
dimensional vector containing those components of Y whose indices belong to the set u, where juj is the cardinality of
the corresponding set u, i.e. Yu ¼ ðYiÞi2u. For example, if u ¼ f1;3;5g, then juj ¼ 3 and fuðYuÞ implies f135ðY1;Y3;Y5Þ.

The component functions fuðYuÞ can be derived by minimizing the error functional [24,25]:
Z
C

f ðYÞ �
X

u # f0;...;sg
fuðYuÞ

" #2

dlðYÞ; ð18Þ
where 0 6 s 6 N.
The measure dl determines the particular form of the error functional and of the component functions. The measure l

induces the projection operator Pu : CN ! Cjuj by [25]
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Puf ðYuÞ :¼
Z

CN�juj
f ðYÞdlDnuðYÞ; ð19Þ
where dlDnuðYÞ :¼
Q

i2D;iRudliðYiÞ.
Therefore, the 2N terms fu can be recursively defined by [24]
fuðYuÞ :¼ Puf ðYuÞ �
X
v�u

fvðYvÞ; ð20Þ
and can also be given explicitly by [40]
fuðYuÞ :¼
X
v # u

ð�1Þjuj�jvjPvf ðYvÞ: ð21Þ
This formulation is particularly useful to combine with ASGC as will be discussed later. The component functions are orthog-
onal with respect to the inner product induced by the measure l,
Z

CN
fuðYuÞfvðYvÞdlðYÞ ¼ 0; for u – v; ð22Þ
and thus the resulting decomposition Eq. (17) is unique for a fixed measure l. In the next sections, we will present two par-
ticularly useful decompositions.

4.1. ANOVA-HDMR

In this case, the measure l is taken as the ordinary Lebesgue measure dlðYÞ ¼ dðYÞ ¼
QN

i¼1dYi. With this choice, the ac-
tions of the projection operators in the ANOVA-HDMR are given by
Puf ðYuÞ :¼
Z

CN�juj
f ðYÞdYDnu: ð23Þ
More specifically, the first few terms are
f0 ¼
Z

CN
f ðYÞdY; f iðYiÞ ¼

Z
CN�1

f ðYÞ
Y
j–i

dYj � f0

fijðYi; YjÞ ¼
Z

CN�2
f ðYÞ

Y
k–i;j

dYk � fiðYiÞ � fjðYjÞ � f0; . . . ð24Þ
This decomposition is the same as the well-known analysis of variance (ANOVA) decomposition used in statistics. A signif-
icant drawback of ANOVA-HDMR is the need to compute the high-dimensional integrals. Even the zeroth-order component
function requires a full-dimensional integration in the space. To circumvent this difficulty, a computationally more efficient
CUT-HDMR expansion will be introduced in the following section for the stochastic model representation which is the focus
of this paper.

4.2. CUT-HDMR

In this work, the CUT-HDMR is adopted to construct the response surface of the stochastic solution. With this method, the
measure l is chosen as the Dirac measure located at a reference point Y ¼ ðY1;Y2; . . . ;YNÞ, i.e. dlðYÞ ¼

QN
i¼1dðYi � YiÞdYi.

With this choice, the projections Eq. (19) become
Puf ðYuÞ :¼ f ðYÞjY¼YnYu
; ð25Þ
where the notation Y ¼ Y n Yu means that the components of Y other than those indices that belong to the set u are set equal
to those of the reference point. Eq. (25) defines a juj-dimensional function where the unknown variables are those dimen-
sions whose indices belong to u. The component functions of CUT-HDMR are explicitly given as follows [24]:
f0 ¼ f ðYÞ; f iðYiÞ ¼ f ðYÞjY¼YnYi
� f0

fijðYi; YjÞ ¼ f ðYÞjY¼YnðYi ;YjÞ
� fiðYiÞ � fjðYjÞ � f0; . . . ð26Þ
It is argued in [24,25] that quite often in typical deterministic physical systems the correlation effects of the higher-
order terms among the input variables for their action upon the output are weak. Tests on several examples from
[24,25] indicate that only the low-order correlations have a significant impact on the output and thus the few low-
er-order terms (usually up to third-order) are often sufficient to represent the model to a desired accuracy. The ex-
tent of high-order variable cooperativity depends on the choice of input variables [25]. However, the exact factors
which determine the correlation effect in stochastic space are unclear and this will be one of the focus points of
this paper.
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It is also interesting to note that the CUT-HDMR can be derived from a Taylor expansion at the reference point [33]:
f ðYÞ ¼ f ðYÞ þ
X1
j¼1

1
j!

XN

i¼1

@ jf
@Yi
ðYÞðYi � YiÞj þ

X1
j1 ;j2>0

1
j1!j2!

X
i1<i2

@j1þj2 f

@Yj1
i1
@Yj2

i2

ðYÞðYi1 � Yi1 Þ
j1 ðYi2 � Yi2 Þ

j2 þ � � � ð27Þ
The infinite number of terms in the Taylor series are partitioned into finite number of groups with each group corresponding
to one CUT-HDMR component function. For example, the first-order component function fiðYiÞ is the sum of all the Taylor
series terms which contain and only contain variable Yi and so on [28]. Any truncated HDMR expansion should provide high-
er-order accuracy than a truncated Taylor series of the same order.

4.2.1. Choice of the reference point
The convergence property of HDMR is rather sensitive to the choice of the reference point. It is argued in [24] that the

reference point can be chosen arbitrarily provided the HDMR expansion is converged. Later, it is pointed out in [29,41] that
in some cases the choice of the reference point is important in order to obtain a good approximation for a fixed-order HDMR
and a careless choice may lead to an unacceptable approximation error.

We would like to choose a suitable point such that the error of a fixed-order HDMR approximation is as small as possible
and the HDMR expansion order is as low as possible. The authors in [29,41] proved that a good reference point should
satisfy:
min
Y2C
jf ðYÞ � E½f ðYÞ�j: ð28Þ
However, the mean of the output is not known a priori. To this end, they proposed to sample a moderate number of random
inputs and compute the mean of the sample outputs. Then the reference point is chosen as the one among the samples
whose output is the closest to the above mean value [29,41]. It is obvious that this method will be quite expensive if it is
used in our problem.

According to the Taylor expansion Eq. (27), if we choose the reference point as the mean of the input random vector, then
the expectation of the output is close to the function value at the mean vector since the coefficients associated with higher-
order terms in the Taylor series are usually much smaller than lower-order terms. It has been shown that in many stochastic
mechanics problems [33], a second-order HDMR expansion usually leads to a satisfactory approximation within a desired
accuracy if the reference point is chosen as the mean vector. Therefore, unless otherwise stated, we always choose the mean
of the random input vector as the reference point in this paper.

4.3. Integrating HDMR and ASGC

Although ASGC depends less on dimensionality than the gPC method, it still suffers with increasing number of dimensions
[23]. Therefore, for problems with high stochastic dimensionality, to obtain accurate results one needs to use a higher-inter-
polation level. However, the number of needed points will grow quickly as shown in Fig. 1. Integrating HDMR and ASGC is a
way to address and overcome this difficulty.

Within the framework of CUT-HDMR, let us rewrite Eqs. (17) and (21) as
f ðYÞ ¼
X
u #D

fuðYuÞ ¼
X
u #D

X
v # u

ð�1Þjuj�jvjf ðYvÞY¼YnYv
; ð29Þ
where we define f ðY;Þ ¼ f ðYÞ. Therefore, the N-dimensional stochastic problem is transformed to several lower-order jvj-
dimensional problems f ðYvÞY¼YnYv

which can be easily solved by the ASGC as introduced in the last section:
f ðYÞ ¼
X
u #D

X
v # u

ð�1Þjuj�jvj
X
kik6Nþq

X
j

wij
vðxÞ � ai

jðYvÞ; ð30Þ
where kik ¼ i1 þ � � � þ ijvj;wij
vðxÞ are the hierarchical surpluses for different sub-problems indexed by v and ai

jðYvÞ is only a
function of the coordinates which belong to the set v. It is noted that the interpolation level q may be different for each
sub-problem according to their regularity along the particular dimensions which is controlled by the error threshold e. In
this work, e is the same for all sub-problems.

Interpolation is done quickly here (with no need to search any tables) through simple weighted sum of the basis functions
and the corresponding hierarchical surpluses. In addition, it is also easy to extract statistics as introduced in Section 3 by
integrating directly the interpolating basis functions. Let us denote
Ju ¼
X
v # u

ð�1Þjuj�jvj
X
kik6Nþq

X
j

wij
vðxÞ � I

i
j; ð31Þ
as the mean of the component function fu. Then the mean of the HDMR expansion is simply E½f ðYÞ� ¼
P

u #DJu. To obtain the
variance of the solution, we can similarly construct an approximation for u2 and use the formula Var½uðxÞ� ¼
E½u2ðxÞ� � ðE½uðxÞ�Þ2.
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Remark 2. It is also possible to use the Smolyak quadrature rule directly to integrate the CUT-HDMR in order to obtain the
mean and the variance [37,38]. However, the method introduced here is much better since it provides a function
approximation to the output that can be used as a stochastic reduced-order model [42] with local adaptivity built in its
representation.
4.4. The effective dimension of a multivariate stochastic function

Related to HDMR expansions is the concept of the effective dimension of a multivariate function [38,40]. In Ref. [38], the
authors have discussed it in the case of integration. Here, we extend this concept to a multivariate stochastic function. Let
f̂ :¼

P
u #DjJuj be the sum of all contributions to the mean value, where jJuj ¼ j

R
fudYuj 6 kfukL1

[38]. Then, for the proportion
a 2 ð0;1�, the truncation dimension is defined as the smallest integer Nt , such that
X

u # f1;...;Ntg
jJujP af̂ ; ð32Þ
whereas, the superposition dimension is defined as the smallest integer Ns, such that
X
juj6Ns

jJujP af̂ : ð33Þ
The superposition dimension is also called the order of the HDMR expansion. The effective dimensions in the case of inter-
polation cannot be defined in a unique manner and their definition is part of the algorithmic approach used.

With the definition of effective dimensions, we can thus truncate the expansion in Eq. (17). In other words, we take only a
subset S of all indices u #D. Here, we assume that the set S satisfies the following admissibility condition:
u 2 S and v � u) v 2 S: ð34Þ
This is to guarantee that all the terms can be calculated according to Eq. (21). For example, the set of indices based on the
superposition dimension can be defined as SNs :¼ fu #D : juj 6 Nsg and the set of indices based on the truncation dimension
can be defined as SNt :¼ fu # f1; . . . ;Ntgg.

Therefore, from Section 4.3, we can define an interpolation formula ASf for the approximation of f which is given by
ASf :¼
X
u2S
AðfuÞ: ð35Þ
Here AðfuÞ is the sparse grid interpolant of the component function fu and ASf is the interpolant of the function f using the
proposed method with the index set S. It is common to refer to the terms ffu : juj ¼ lg collectively as the ‘‘order-l terms”.
Then the expansion order, p, for the decomposition Eq. (35) is defined as the maximum of l. Note that the number of collo-
cation points in this expansion is defined as the sum of the number of points for each sub-problem from Eq. (30), i.e.
M ¼

P
u2SMu.

Now, let us consider the approximation error of the truncated HDMR expansion with ASGC used for the component func-
tions in Eq. (35). To this end, we fix a 2 ð0;1� and assume that Ns and Nt , the corresponding superposition and truncation
dimensions, are known. We define the index set SNt ;Ns :¼ fu # f1; . . . ;Ntg; juj 6 Nsg. We can state the following theorem:

Theorem 1. Let S ¼ SNt ;Ns , and let A be the ASGC interpolant with the same error threshold e for all the sub-problems. Then:
jf �ASf j 6 cðNs;NtÞeþ et; ð36Þ
for all f 2 FN, where FN :¼ ff : ½0;1�N ! R;Dkmkf continuous, mi 6 2;8ig. Here, the constant cðNt ;NsÞ depends on the effective
dimensions but does not depend on the nominal dimension N. et is the truncation error of Eq. (35) according to the definition
of effective dimensions.

Proof. The proof of this theorem is similar to that of Theorem 3.3 in [38]. We start with
jf �ASf j 6 jf � fSj þ jfS � ASf j; ð37Þ
where fS :¼
P

u2SNt ;Ns
fuðYuÞ. The first term on the right hand side is the truncation error and the second term is the interpo-

lation error. According to the definition of effective dimensions, with increasing a 2 ð0;1�, the approximation approaches the
true value. Therefore, for a fixed a, we can denote the truncation error as jf � fSj ¼ et . From Eq. (21), we have the expression
fu � AðfuÞ ¼
X
v # u

ð�1Þjuj�jvjðPvf � AðPvf ÞÞ: ð38Þ
According to the ASGC algorithm, it is known that the approximation error is controlled by the error threshold e. Since we
choose the same e for each sub-problem, we have jPvf � AðPvf Þj 6 e [23].

Therefore, we have
jfS � ASðf Þj 6
X
u2S
jfu � AðfuÞj 6

X
u2S

X
v # u

jPvf � AðPvf Þj 6
X
u2S

X
v # u

e ¼
XNs

k¼1

Nt

k

� �Xk

j¼1

k

j

� �
e 6 cðNt;NsÞe; ð39Þ
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with the constant cðNt ;NsÞ given as [38]
cðNt;NsÞ :¼
XNs

k¼1

Nt

k

� �Xk

j¼1

k

j

� �
6

XNs

k¼1

Nt

k

� �
2k
6 2Nsþ1NNs

t ;
which completes the proof. h

Therefore, it is expected that the expansion Eq. (35) converges to the true value with decreasing error threshold e and
increasing number of component functions.

4.5. Adaptive HDMR

In practice, the effective dimensions are not known a priori. In order to find the effective dimensions, one needs to com-
pute all 2N component functions. They were originally defined for the representation of pure mathematical functions [29,38].
However, in our case, calculating effective dimensions is not practical since we need to solve PDEs and thus the computa-
tional cost is much higher than that for function evaluation. Note that the total number of component functions for a l-th
order expansion is

Pl
i¼0

N!
i!ðN�iÞ!, which increases quickly with the number of dimensions. Therefore, in this section, we would

like to develop an adaptive version of HDMR for automatically and simultaneously detecting the truncation and superposi-
tion dimensions.

We here assume each component function fu is associated with a weight gu P 0, which describes the contribution of the
term fu to the HDMR. Using this information, we then want to automatically determine the optimal index set S, which con-
sists of two steps.

At first, we try to find the important dimensions, i.e. the truncation dimension. To this end, we always construct the zer-
oth- and first-order HDMR expansion where the computational cost is affordable even for very high-dimensions. In this case,
the weight is defined as:
gi ¼
kJfigkL2ðDÞ

kf0ðYÞkL2ðDÞ
; ð40Þ
where Jfig ¼
R

fiðYiÞdYi follows the definition in Eq. (31) and the L2 norm is defined in the spatial domain when the output is a
function of spatial coordinates. Each first-order component function is only a one-dimensional function which measures the
impact on the output when each dimension is acting independently. According to Eqs. (26) and (40), this weight can be con-
sidered as a measurement of the sensitivity of the output when only the ith–dimension is the input. Then we define the
important dimensions as those whose weights are larger than a predefined error threshold h1. Now, the set D in Eq. (29) only
contains these important dimensions instead of all the dimensions. For example, if the important dimensions are 1, 3 and 5,
then only the higher-order terms {13}, {15}, {35} and {135} are considered. It is noted that the important dimensions depend
on the choice of h1. With decreasing h1, more dimensions become important and therefore more terms need to be included in
the HDMR.

The reason for defining the weight in Eq. (40) is as follows. HDMR is aimed to reveal the correlation effects among the
input variables as reflected upon the output. The correlation effect is large if the change of the random input within its range
will lead to a significant change on the output. According to the definition of first-order component function,
fiðYiÞ ¼ f ðYÞjY¼YnYi

� f0; fiðYiÞmeasures the difference between the function value with only input arising from one dimension
acting independently and the function value at the reference point. It contains the information about the impact upon the
output from this particular dimension. Therefore, if the weight is defined as in Eq. (40), it clearly gives us information on the
impact that this dimension has when is acting alone upon the output. Only those dimensions which have significant impact
on the output are considered as important. Then it is straightforward to argue that if two dimensions are important, there is a
possibility that the impact upon the output is still significant if these two dimensions act together. Therefore, we need to
consider all the component functions of only these important dimensions. It is noted that a similar definition is also proposed
in [38] and is proved to be effective.

However, not all the possible terms are computed. Instead, we adaptively construct higher-order component functions
increasingly from lower-order to higher-order in order to reduce the computational cost in the following way. For each com-
puted higher-order term fu; jujP 2, a weight is also defined as
gu ¼
kJukL2ðDÞP

v2S;jvj6juj�1
Jv

�����
�����

L2ðDÞ

: ð41Þ
It measures the relative importance with respect to the sum of current integral value which has already been computed in
set S from the previous order. Similarly, the important component functions are defined as those whose weights are larger
than the predefined error threshold h1. We put all the important dimensions and higher-order terms into a set T , which is
called the important set. When adaptively constructing HDMR for each new order, we only calculate the term fu whose indi-
ces satisfy the admissibility relation Eq. (34),
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u 2 D and v � u) v 2 T : ð42Þ
In other words, among all the possible indices, we only want to find the terms which can be computed using the previous
known important component functions via Eq. (20). In this way, we find those terms which may have significant contribu-
tion to the overall expansion while ignoring other trivial terms thus reducing the computational cost for high-dimensional
problems.

Let us denote the order of expansion as p. Furthermore, we also define a relative error q of the integral value between two
consecutive expansion orders p and p-1 as
q ¼

P
juj6pJu �

P
juj6p�1Ju

��� ���
L2ðDÞP

juj6p�1Ju

��� ���
L2ðDÞ

: ð43Þ
If q is smaller than another predefined error threshold h2, we consider that the HDMR has converged and the construction
stops.

The above procedure is detailed in Algorithm 1.

Algorithm 1. Adaptive construction of the index set S.

Initialize: Let S ¼ f;g;R ¼ f;g and T ¼ f;g. Set p ¼ 1.
Construct the zeroth and first-order component functions:
� Solve each sub-problem using the ASGC method with error threshold e and add all the indices to S.
� Compute the weights of each first-order term according to Eq. (40). Add those dimensions which satisfy g P h1 to set T .
repeat
� p pþ 1. Construct the set R whose indices satisfy the admissibility relation Eq. (42) for juj ¼ p.
� If R– f;g, for each index u 2 R, solve the corresponding sub-problem using ASGC with error threshold e and add all

the indices to S.
� Compute the weight of component functions according to Eq. (41). Add those indices which satisfy g P h1 to set T and

clear set R.
� Compute the relative error q according to Eq. (43).
until R ¼ f;g or q < h2;

It is noted here that we add all the computed indices to set S even if their weight is below the threshold h1 in order to
further improve the accuracy since we have already paid the cost to compute them. This is similar idea to that used in the
ASGC algorithm [23].

Before closing this section, we want to comment again on the definition of the weights in Eqs. (40) and (41). As discussed
before, these weights provide information on the contribution of each component function to the overall expansion. In addi-
tion, the weights from the first-order expansion also provide us information on the important dimensions. An important
dimension here is defined in a relative sense, which means that its impact upon the output is more significant than that
of others. Here, we provide a guideline to select h1. Since the expansion of each order only depends on the previous order,
we can first only construct the first-order expansion. Then we can sort all dimensions in a descending order according to the
value of gi. Finally, the value of h1 is chosen such that only a certain portion of the dimensions are considered important. If all
the weights are the same, we have to include all the dimensions. Although we do not have the situation in the numerical
examples considered here, there is a possibility that kf0ðYÞkL2

¼ 0. In this case, one can simply define gi ¼ kJfigkL2
.

5. Numerical examples

In this section, two sets of numerical examples are considered to illustrate the proposed HDMR technique. In the inves-
tigations below we consider both adaptive HDMR and conventional HDMR where the adaptivity here refers only to the trun-
cation of the expansion. In all examples, the ASGC method is used for the calculation of the component functions. The ASGC
method used alone refers to the adaptive sparse grid collocation in [23] applied directly (without HDMR expansion) to the
interpolation of the original function of interest or to the solution of the SPDE. Similarly, CSGC refers to the conventional
sparse grid interpolation without adaptivity applied to the original function or solution of the SPDE. The first set of examples
involves elementary mathematical functions while the second set involves stochastic fluid mechanics problems. Whenever
possible, comparisons with alternative methods are provided to evaluate the accuracy, computational efficiency, and conver-
gence of the proposed method. In the following examples, unless otherwise specified, h2 is fixed at 10�4.

5.1. Example set I – mathematical functions

It is noted that according to the right hand side of HDMR Eq. (15), if the function has an additive structure, then HDMR is
exact, e.g. when f(Y) can be additively decomposed into functions fiðYiÞ of single variables, then the first-order expansion is
enough to exactly represent the original function. On the other hand, if a multiplicative nature of the function is dominant
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then all components of HDMR may be needed to obtain an accurate result. However, if HDMR requires all 2N components to
obtain a desired accuracy, the method becomes very expensive. This example is designed to investigate how function struc-
ture and input variability affect the accuracy of the proposed method.

5.2. Example 1

Let us first consider the following simple function which has an additive structure in ½0;1�N:
Table 1
Interpo

N ¼

1st o

2nd

3rd o
f ðYÞ ¼
XN

i¼1

Y2
i : ð44Þ
where Yi are uniform random variables with range [0,1]. Here, we take N ¼ 10 and a third-order conventional HDMR expan-
sion with e ¼ 10�4. After constructing the HDMR, we generate 100 random points and compare the interpolating results of
HDMR with the exact value. The normalized L2 error is defined as
�L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP100
i¼1 ðfHDMRðYiÞ � fexactðYiÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP100

i¼1 fexactðYiÞ2
q ð45Þ
The result is shown in Table 1. As expected, only first-order HDMR is enough to represent the function exactly. Increasing the
expansion order does not improve the accuracy.

We compare next the convergence rate of first-order HDMR with other methods, which is shown in Fig. 2. Using HDMR,
the number of points required to achieve a certain level of accuracy is much less than that using other methods. The number
of points for CSGC at level 6 is 171,425, when going to the next level, the number increases to 652,065. The number of points
using ASGC alone is 12621. It is also interesting to note that the convergence rate of HDMR is the same as for ASGC, which
shows that the error of HDMR is also controlled by e. To further verify the results numerically, we compare the maximum
error with respect to different e for HDMR and ASGC, respectively, in Table 2. As expected the error threshold e also controls
the error of a converged HDMR. This can be partially explained as follows. From Eq. (36), the error of HDMR consists of two
parts: truncation error of HDMR and interpolation error of ASGC in the component function calculation. When HDMR has
converged, the error is only determined by the interpolation error of each low-dimensional component function using ASGC
which is also e, and recall that HDMR is a linear combination of all the low-dimensional functions. Therefore the error is
approximately Ce, where C is a constant. This case suggests that a lower-order converged HDMR is a good substitute of ASGC
with much less needed number of collocation points.

5.3. Example 2

Next we consider the function‘‘product peak” in ½0;1�N from GENZ test package [43] which has multiplicative nature:
f ðYÞ ¼
YN

i¼1

ðc�2
i þ ðYi �wiÞ2Þ�1

; ð46Þ
where ci and wi are constants and N ¼ 10. Yi are uniform random variables with range [0,1]. The interpolation error is de-
fined the same as before. The integration (mean) value of this function is defined as I ¼

R
½1;0�10 f ðYÞdY. The relative integration

error is defined as jInum�Iexact j
jIexact j where the exact value is available analytically.

We first examine the convergence of the HDMR with different expansion orders while fixing e ¼ 10�6, which is shown in
Fig. 3. Unlike the previous example, we now need all the terms in the HDMR expansion to obtain the exact result due to the
multiplicative structure of the function. However, it is seen that the interpolation error decreases quickly with increasing
expansion order. At least a fifth-order expansion is needed to achieve accuracy of Oð10�3Þ in this case. It is also interesting
to note that HDMR converges faster for integration. Since the integration (mean) value is a statistical measure, it possibly
suggests that the convergence rate depends more on the statistics of the input than the structure of the function itself.
We will further investigate this in the next example.

In Table 3, we also report the convergence of the ASGC used in the calculation of the component functions for a fixed
HDMR expansion order. In the combination of each order and e, the first column is the L2 interpolation error and the second
lation of the function in Eq. (44) using HDMR of different orders with interpolation error threshold e ¼ 10�4.

10 # Points L2 Error

rder HDMR 1291 1:3027� 10�4

order HDMR 33,016 1:3027� 10�4

rder HDMR 340,336 1:3027� 10�4
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Fig. 2. L2 interpolation error versus number of points for the function in Eq. (44).

Table 2
Maximum error using first-order HDMR and ASGC with various e.

N ¼ 10 HDMR ASGC

# Points MaxError # Points MaxError

e ¼ 10�1 51 1:3887� 10�1 221 1:3887� 10�1

e ¼ 10�2 171 8:3629� 10�3 1421 8:3629� 10�3

e ¼ 10�3 331 2:1349� 10�3 3021 2:1349� 10�3

e ¼ 10�4 1291 1:3027� 10�4 12,621 1:3027� 10�4

e ¼ 10�5 5131 8:3142� 10�6 51,021 8:3142� 10�6
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Fig. 3. Convergence of HDMR for the function in Eq. (46) with different orders.

Table 3
Relative errors for various HDMR expansion order and error threshold. In each combination, the first column is the L2 interpolation error and the second is the
relative mean error.

Order e ¼ 10�5 e ¼ 10�6 e ¼ 10�7

1 2:56� 10�1 3:99� 10�2 2:56� 10�1 3:98� 10�2 2:56� 10�1 3:98� 10�2

2 7:53� 10�2 2:23� 10�3 7:57� 10�2 2:55� 10�3 7:57� 10�2 2:65� 10�3

3 1:07� 10�2 4:02� 10�4 1:12� 10�2 2:25� 10�4 1:13� 10�2 1:46� 10�4
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is the relative integration error. As expected, the refinement of the ASGC does not improve the accuracy of the interpolation
error within each expansion order. This is consistent with the previous results that when HDMR is not converged, the overall
error is dominated by the truncation error. On the other hand, the integration value converges with a third-order expansion
and for this case refining the ASGC improves the accuracy of the mean value. This suggests that the expansion order and the
refinement of ASGC should be increased simultaneously to achieve a satisfactory accuracy, which is consistent with the re-
sults reported in [37].

Since each dimension may weigh unequally in this function, it is also interesting to compare the performance of HDMR
with that of adaptive methods, i.e. adaptive HDMR and ASGC. The adaptive HDMR is combined with ASGC as described in
Section 4.3. We fix h2 ¼ 10�4 while varying h1. In addition, we choose the same e ¼ 10�6 for all three methods (conventional
fixed-order HDMR, adaptive HDMR and ASGC). The results are given in Table 4. For conventional HDMR, we need about 4
million collocation points to obtain an accurate result. On the other hand, it is seen that we can arrive at the same integration
error as that of conventional HDMR and ASGC with much less number of collocation points by using adaptive HDMR. How-
ever, the interpolation error of adaptive HDMR is larger than that of the other two methods. This is expected since our error
indicator for the important component functions is based on the mean value and thus it generally favors the strong inter-
action between those dimensions that impact the mean of the output. Therefore, due to the multiplicative nature of the func-
tion, we need to include all the component functions to compute an accurate value.

This example shows that HDMR may not be useful for interpolating arbitrary mathematical functions but it may have a
good convergence property for the approximation of integrals. Although the lack of the importance of higher-order effects for
constructing the approximation of input–output relations for most deterministic physical systems is general [24–28], this
feature for the interpolation of stochastic systems deserves further investigation in the next few examples. In addition,
the relation between the convergence of the output statistics and the expansion order of HDMR is also important which
has not been reported before.

In Fig. 4, we also investigate the effects of different choices of the reference point. It is shown that the results are indeed
more accurate for a fixed-order expansion if the reference point is near the center of the domain. Therefore, in the remaining
of the examples, we always take the reference point as the mean of the input random vector.

5.4. Example 3

The final example in this set entails calculation of the mean and standard deviation of the output
Table 4
Compar

5th H

HDM

HDM

ASGC
f ðXÞ ¼ 1

1þ
P10

i¼1aiXi

; ð47Þ
where the random input Xi ¼ rYi and Yi are i.i.d. uniform random variables in �
ffiffiffi
3
p

;
ffiffiffi
3
ph i

; i ¼ 1; . . . ;10. Therefore, the param-

eter r controls the standard deviation (std) of the input. The coefficients ai; i ¼ 1; . . . ;10 adjust the weight of each dimension.
The HDMR expansion is employed to compute the mean and standard deviation of the output.

First, an isotropic case is considered by setting ai ¼ 0:1; i ¼ 1; . . . ;10, i.e. each dimension weighs equally. The results are
plotted in Fig. 5 for increasing values of standard input deviation. The relative errors are defined the same as before where
the reference solution is taken from 106 MC samples. Here, conventional (fixed-order) HDMR is used where the error thresh-
old is e ¼ 10�6. From the figure, it is seen that with increasing r, a higher-order expansion is needed to obtain an acceptable
accuracy of order Oð10�3Þ. On the other hand, when r is small, only second-order expansion is enough to give us accurate
results. Even first-order expansion is accurate when r 6 0:1. When r P 0:7, fourth-order expansion is not enough and thus
higher-order terms in the HDMR expansion are needed. The higher the input standard deviation is, the stronger the corre-
lation effects are among the dimensions. Therefore, higher-order expansion is needed to capture these cooperative effects. In
function Eq. (46), the input is uniform distribution [0,1]. Its input standard deviation is about 0.289, which is not very large.
This explains why its mean converges after a third-order expansion.

The interpolation error is also given in Fig. 6. As expected, due to the non-linear nature of the function, higher-order
HDMR expansions usually give better accuracy. But at the same time, the interpolation error for a fixed-order expansion also
increases with increasing r. It is also noted that, as for the integration case, a smaller r has the effect of reducing the number
of the effective dimensions of the function. For example, when r ¼ 0:3, the relative error is about 10�3 when using only a
second-order HDMR.
ison of performance of conventional (fixed-order) HDMR, adaptive HDMR and ASGC.

# Terms # Points �interpolation �integration

DMR 638 4,712,870 5:65� 10�4 1:62� 10�4

R: h1 ¼ 10�3 78 83,400 6:23� 10�2 8:72� 10�4

R: h1 ¼ 10�4 140 220,930 1:47� 10�2 1:28� 10�4

: e ¼ 10�6 N/A 305,670 4:23� 10�4 1:28� 10�4
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Next, we consider two anisotropic cases. For Case 1, ai ¼ 0:1
2i�1 ; i ¼ 1; . . . ;10. The ratio between the smallest coefficient and

the largest one is about 0.002. For Case 2, ai ¼ 0:1
10i�1 ; i ¼ 1; . . . ;10. The ratio between the smallest coefficient and the largest
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one is about 10�9. Thus, Case 1 refers to an anisotropic problem with small differences between dimensions while Case 2
refers to a highly anisotropic problem where the first four dimensions are the most important. In these two cases, we again
fix the ASGC threshold e ¼ 10�6 and choose a rather large input standard deviation r ¼ 2:0. The reference solution is still
taken from 106 Monte Carlo samples. The results for Cases 1 and 2 are plotted in Figs. 7 and 8, respectively. In the left plot
of Fig. 7, it is seen that the mean and standard deviation converge even for such a large r. The interpolation error achieves an
order of 10�4 with only a fourth-order HDMR. Therefore, the different weights between dimensions result in reduction of the
number of effective dimensions in the HDMR expansion. This is more obvious in the left plot of Fig. 8 where the mean and std
errors converge after a second-order expansion and the interpolation error converges after a third-order expansion. This can
be explained as follows. If the weights of some dimensions are much larger than those of others, then these dimensions have
most of the impact on the output. In this case, only those component functions which consist of these dimensions provide
most of the contribution to HDMR. If the number of important dimensions is small, then less component functions are
needed and this leads to an accurate low-order HDMR expansion.

Since each dimension is given a different weight, we also use adaptive HDMR. In the plots on the right of Figs. 7 and 8, we
compare the HDMR (conventional and adaptive) convergence rates for Cases 1 and 2, respectively, with those of ASGC. To
plot the convergence of conventional (fixed-order) HDMR, we increase the expansion order from 1 to 5 (each symbol in
the figures denotes an expansion order). The convergence of adaptive HDMR is plot by decreasing h1 (each symbol in the
figures corresponds to a different h1 value). To plot the convergence of ASGC, we plot the error at each interpolation level
when constructing the grid level by level. It is seen that for Case 2 adaptive HDMR is much better than both conventional
HDMR and ASGC. On the other hand, in Case 1, ASGC is better than the HDMR methods in terms of interpolation. This is ex-
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pected since, in such a high r case, there is no significant difference between dimensions and we need a higher-order expan-
sion to capture the interaction effects.

Tables 5 and 6 show the total number of collocation points and also the number of expansion terms used in HDMR for
different h1. It is noted that adaptive HDMR requires much less expansion terms and thus less collocation points than con-
ventional HDMR, especially in Case 2. It is also interesting to note that to achieve the same accuracy, the number of expan-
sion terms in Case 2 is less than that of case 1. This is due to the strong anisotropic weights such that only the first five
dimensions are important. Therefore, only those terms which involve these dimensions are constructed by adaptive HDMR.
In Fig. 9, for both cases we also plot the weights, which are defined in Eq. (40) for each first-order component function indi-
cating the importance of each dimension. It can be seen that the weights decrease quickly with the indices of the dimensions.
In Case 1, the number of important dimensions are 7, 9 and 10 for h1 ¼ 10�5;10�6 and 10�7, respectively. In Case 2, the num-
ber of important dimensions are 3, 4 and 5 for h1 ¼ 10�6;10�7 and 10�9, respectively.

Overall, the HDMR reveals the correlations among the input variables as reflected upon the output. Each order-l terms
introduce the correlated effects of l-input variables into the expansion. Therefore, the order of HDMR expansion or the total
number of component functions depends on the cooperative effects among the input dimensions, which further depends on
the input variability and the importance of each dimension as demonstrated through this example set. In general, higher-
order expansion will give better accuracy since it captures more correlation effects. However, as shown in this example,
HDMR is useful if it can represent the output to a good accuracy with a sufficiently low-order expansion. For the case of small
input variability and strong anisotropic situation, a low-order expansion can lead to a good accuracy. At the same time, by
using adaptive HDMR, we can also significantly reduce the computational cost without sacrificing the accuracy. In the next
Table 5
Comparison of performance of fourth-order HDMR and adaptive HDMR for the anisotropic Case 1 where ai ¼ 0:1=2i�1 ; i ¼ 1; . . . ;10.

4th HDMR Adaptive HDMR

h1 ¼ 10�5 h1 ¼ 10�6 h1 ¼ 10�7

# Terms 386 37 64 88
# Points 388,891 16,584 44,095 75,877

Table 6
Comparison of performance of third-order HDMR and adaptive HDMR for the anisotropic Case 2 where ai ¼ 0:1=10i�1; i ¼ 1; . . . ;10.

3rd HDMR Adaptive HDMR

h1 ¼ 10�6 h1 ¼ 10�7 h1 ¼ 10�9

# Terms 176 14 17 22
# Points 30,296 1144 1575 2912
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two sections, we will investigate the convergence properties of adaptive HDMR on realistic physical systems and investigate
if similar conclusions are obtained.

5.5. Example set II – fluid-mechanics problems

In the following two examples, random fields which are discretized by K-L expansion are introduced to increase the
dimension of the stochastic problem. The reference solutions are taken from Monte Carlo simulations. The obtained mean
values in these examples compared extremely well with the corresponding MC results for all cases considered and therefore
we will focus our discussion only on the standard deviation. The spatial L2 normalized error of std r is defined as
�L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðrHDMRðxiÞ � rMCðxiÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1rMCðxiÞ2
q ð48Þ
where n is the number of grid points in the spatial domain.

5.6. Example 4: flow through random heterogeneous media

In this section, we consider flow through random porous media where the permeability is a random field obtained from
the K-L expansion of an exponential covariance function. Through this classical problem, we want to investigate the effects of
input variability on the accuracy and convergence of HDMR. The problem is defined as follows:
r � uðx;YÞ ¼ f ðxÞ; ð49Þ
uðx;YÞ ¼ �Kðx;YÞrpðx;YÞ; ð50Þ
where the source/sink term f(x) is taken to be deterministic and K(x,Y) is the random permeability. The domain of interest is
a quarter-five spot problem in a unit square D ¼ ½0;1�2. Flow is driven by an injection well at the bottom left corner of the
domain and a production well at the top right corner. A mixed finite element method is utilized to solve the forward problem
[21].

The log-permeability is taken as zero mean random field with a separable exponential covariance function
Covðx; yÞ ¼ r2exp � jx1 � y1j
L

� jx2 � y2j
L

� �
; ð51Þ
where L is the correlation length and r is the standard deviation of the random field. The K-L expansion is used to param-
eterize the field as
YðxÞ ¼ logðKðxÞÞ ¼
XN

i¼1

ffiffiffiffi
ki

p
/iðxÞYi; ð52Þ
where the eigenvalues ki; i ¼ 1;2; . . . ; and their corresponding eigenfunctions /i; i ¼ 1;2; . . . ; can be determined analytically
as discussed in [1,5]. The Yi are assumed as i.i.d. uniform random variables on [�1,1].

In order to investigate the accuracy and applicability of the proposed HDMR approach, we design a series of numerical
runs with different correlation lengths L and various degrees of spatial variability r2. The first three cases aim to investigate
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the effects of correlation length (L ¼ 1:0;0:5 and 0.25) on the proposed approach. In these cases, the degree of spatial var-
iability is kept at r2 ¼ 1:0, which corresponds to a moderately high variability. The next three cases are compared against
case 3 when L ¼ 0:25 to examine the impact of the log-permeability variability (r2 ¼ 0:01;0:25 and 2.0) ranging from very
low to extremely high variability. Monte Carlo simulations are conducted for the purpose of comparison. For each case, the
reference solution is taken from 106 MC samples and all errors are defined as normalized L2 errors. In all cases, the threshold
h2 for the relative error is fixed at h2 ¼ 10�4.

Let us first determine the stochastic dimension of our example cases. The eigenvalues and the sum of the eigenvalues as a
function of the number of terms included are illustrated in Fig. 10 with three different correlation lengths for the case
r2 ¼ 1:0. The corresponding eigenfunctions are shown in Fig. 11. Based on these figures, the K-L expansions are truncated
after 33, 108 and 500 terms, respectively for L ¼ 1:0;0:5; 0:25, which represents 	95% of the total variance of the exponential
covariance function. The truncation level for the expansion does not change for a fixed correlation length. Therefore, in all
cases, the number of stochastic dimensions is N ¼ 33;108 and 500, respectively for L ¼ 1:0;0:5 and 0.25. In these cases, the
ratio between the smallest eigenvalue and the largest eigenvalue is about 10�3 which is similar to the moderate anisotropic
Case 1 in Section 5.4. According to previous results on mathematical functions, we would expect that the convergence of the
HDMR expansion depends on the input variability and that HDMR can deal with a moderately high stochastic input standard
deviation.
5.6.1. Effect of correlation length
We fix r2 ¼ 1:0 and consider three different correlation lengths at L ¼ 1:0;0:5 and 0.25. In this way, the input variability is

fixed and the change of correlation length adjusts the weights of each random dimension. Thus, we want to investigate the
effect of the smoothness of the stochastic space on the accuracy of the HDMR expansion as we did in Section 5.4.

We decrease e and h1 simultaneously until the L2 normalized errors reach an order of Oð10�3Þ. It is interesting to note that
these computed errors are achieved with the same e ¼ 10�6 and h1 ¼ 10�4 for all three correlation lengths. In Fig. 12, we
compare the standard deviation of the v velocity-component along the line y ¼ 0:5 with the results from the MC simulation.
It is seen that the two results compare extremely well, where the errors are 1:46� 10�3;1:19� 10�3 and 1:39� 10�3, respec-
tively for L ¼ 1:0; L ¼ 0:5 and L ¼ 0:25.

To investigate the convergence of HDMR, we fix e ¼ 10�6 while varying h1. The PDFs of the v velocity-component at point
(0,0.5), where the standard deviation is large as in Fig. 12, are shown in Fig. 13. Each PDF is generated by plotting the kernel
density estimate of 10000 output samples through sampling the input space and computing the output value through the
HDMR approximation. When h1 ¼ 10�2, the weights of all first-order terms are smaller than the threshold and thus there
are no higher-order terms. It is seen that the results from only the first-order expansion are not accurate in all three cases
which is consistent with the result in Fig. 7. This may be explained intuitively as follows. The spatial variability r2 deter-
mines the total input variability, which further determines the correlation effects among the input variables. The larger
the input variability is, the stronger the correlation effects are. The role of HDMR component functions is to capture these
input effects upon the output. In other words, the number of component functions needed depends on the input variability.
The higher the input variability is, the more component functions are needed for a fixed stochastic dimension. For low-input
variability, even first-order expansion may be accurate enough no matter what the stochastic dimension is. In our case,
r2 ¼ 1:0 represents a rather high-input variability. Higher-order terms are therefore needed to capture these effects whereas
only first-order terms are not enough. The number of important dimensions is shown in Table 7. By decreasing h1, more
dimensions whose weights defined in Eq. (40) are larger than h1 become important and thus more second-order terms ap-
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pear. This means more correlation effects are included in the expansion and thus better accuracy. The number of component
functions is 287, 889 and 2271 while for the full second-order expansion it is 562, 5887 and 125,251, respectively. Thus, the
advantage of using adaptive HDMR is obvious, especially for N ¼ 500. As expected, all the results converge to those obtained
from the MC simulation with decreasing h1. The computed PDFs indicate that the corresponding HDMR approximations are
indeed very accurate. Therefore, we can obtain any statistic from this stochastic reduced-order model, which is an advantage
of the current method over the MC method.

The convergence of the L2 normalized error with respect to the total number of collocation points is shown in Fig. 14 by
fixing h1 ¼ 10�4. The error plots are obtained by decreasing the threshold e used in the ASGC. Although different correlation
lengths result in different truncated stochastic dimensions from the K-L expansion, it is interesting to note that we still have
algebraic convergence rates and they are nearly the same for all three cases. This may be explained using Theorem 1. The
input variability is the same and so is the superposition dimension. Thus, the constant in Eq. (36), which only depends on
the effective dimensions, is nearly the same. In addition, the error in Eq. (36) exhibits a linear dependence on the threshold
e and as we know the convergence rate of the sparse grid collocation method is algebraic [17,23]. Thus, the convergence plot
here indeed exhibits algebraic rate as indicated from Theorem 1.

In order to further verify the results discussed in this section, we investigate the effect of the spatial variability in the next
section.

5.6.2. Effect of the spatial variability r2

In this section, we fix the correlation length at L ¼ 0:25 such that the weight of each dimension from the K-L expansion is
nearly the same. Then we explore the effects of the spatial variability r2, from very small variability r2 ¼ 0:01 to very high
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variability r2 ¼ 2:0. The number of stochastic dimensions is N ¼ 500. For such a nearly isotropic situation, as indicated in
Fig. 5, it is expected that the accuracy of HDMR depends on the input spatial variability.

Fig. 15 compares the standard deviation of the v velocity-component along the line y ¼ 0:5 with the results obtained from
the MC simulation. Again, we obtain very good comparison where the errors are 8:08� 10�4;7:37� 10�4 and 2:86� 10�3 for
r2 ¼ 0:01;r2 ¼ 0:25 and r2 ¼ 2:0, respectively. Comparing with the result when r2 ¼ 1:0, it can be seen that the error in
standard deviation increases with increasing input variability which again verifies our previous results in Fig. 5. However,
we can still obtain an acceptable accuracy even when the spatial variability is as high as r2 ¼ 2:0. It is interesting to note
that the threshold e needed to achieve the desired accuracy is smaller for r2 ¼ 0:01 and 0.25 than for r2 ¼ 1:0. This is
due to the small correlation length and low input variability which results in a rather smooth stochastic space such that
the hierarchical surpluses decrease very fast. Therefore, we need a much smaller e to trigger the adaptivity otherwise the
refinement of ASGC for each sub-problem stops earlier. This also shows the ability of ASGC to detect the smoothness of
the stochastic space. The increase of the spatial variability also results in the increase of the magnitude of the standard devi-
ation from r2 ¼ 0:01 to r2 ¼ 2:0 in Fig. 15, i.e. increasing of the variability in the solution.

Similarly, the convergence of the corresponding PDFs is given in Fig. 16. For the case r2 ¼ 0:01, we show the convergence
with respect to e instead. This is because the first-order expansion is accurate enough to represent the solution due to the
rather low input variability as expected. Even when the value of h1 is as small as 10�4, the weights of all the first-order terms
from Eq. (40) are still smaller than the threshold. Therefore, there is no need to include second-order terms. Due to the small
variability, even a smaller e can give us a very accurate result as shown in the figure. Compared with Fig. 13, although sec-
ond-order terms are still needed for the cases r2 ¼ 0:25 and 2.0, the PDFs from the first-order terms are not apart from the
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Fig. 13. PDF of v velocity-component at point (0,0.5) for different correlation lengths, where r2 ¼ 1:0 and e ¼ 10�6.

Table 7
Number of important dimensions Ni and component functions Nc for different h1.

h1 L ¼ 1:0 L ¼ 0:5 L ¼ 0:25

Ni Nc Ni Nc Ni Nc

10�2 0 34 0 109 0 501

10�3 5 44 8 137 11 556

10�4 23 287 40 889 60 2271
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MC results for the cases r2 ¼ 0:25 and h1 ¼ 10�2 when the input variability is moderately high. On the other hand, for
r2 ¼ 2:0, the result from the first-order HDMR expansion ðh1 ¼ 10�2Þ deviates significantly from that of the MC results. In-
deed, comparing all four cases when L ¼ 0:25, it is clear that the PDFs from the first-order expansion deviate gradually from
the MC results with increasing input variability r2. This reflects that the correlation effects become significant and therefore
more higher-order terms are needed to capture these effects, which is again consistent with the result in Fig. 6. The improve-
ment of the results is obvious as more terms are included with decreasing h1. This numerically verifies our previous discus-
sion that the number of component functions needed depends on the input variability. There are 501, 879 and 2271
component functions for r2 ¼ 0:01;0:25 and 2.0, respectively. Correspondingly, the total number of collocation points are
9337, 74,127, and 249,329.

The convergence of the L2 normalized error with respect to the total number of collocation points is shown in Fig. 14 by
decreasing e in the ASGC. As expected, the convergence rates deteriorate with increasing r2. For r2 ¼ 0:01, the convergence
rate is nearly of the order of OðM�2:87Þ. This is because first-order HDMR expansion is used and the number of collocation
points used in the first-order terms is much lower than that in higher-order terms. The convergence rate for the case
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r2 ¼ 2:0 is the lowest among all the cases examined so far. However, it is still better than the theoretic MC rate OðM�0:5Þ and
the results compare well with that of MC. Comparing all four cases when L ¼ 0:25, it is seen that although the stochastic
space is smooth, the convergence rate still decreases with increasing spatial variability. Thus, as discussed before, the num-
ber of component functions needed for a fixed stochastic dimension depends more on the input variability for such situation.
This provides us a very useful guideline to set up the parameters when applying HDMR to realistic stochastic problems. On
the other hand, the regularity of the stochastic space can be effectively resolved with the ASGC method. The proposed meth-
od is indeed a very powerful and versatile method to address stochastic PDE problems.

5.6.3. Effect of choices of the reference points Y
Here, we also investigate the effect of the reference points Y on the convergence of the adaptive HDMR expansion when

r2 ¼ 1:0 and L ¼ 1:0 as discussed in Section 4.2.1. We fix e ¼ 10�6 and vary h1. The error convergence for three different ref-
erence points is shown in Fig. 18. As expected, when the reference point is far from the mean point, the convergence rate is
quite slow and many more points are required to achieve a good accuracy.

In Table 8, we also tabulate the relevant parameters. It is seen from the table and Fig. 18 that when the reference point
Y ¼ ð0:5; . . . ;0:5Þ, it requires the least number of component functions and thus collocation points to achieve an error of or-
der Oð10�3Þ. When the reference point is far from the center, higher-order expansion is needed to obtain an accurate result.
However, when Y ¼ ð0:1; . . . ;0:1Þ, the error is 3:82� 10�2 even when using a fourth-order expansion. Thus, we need to in-
crease the expansion order or decrease h1. This will significantly increase the computational cost. Overall, the result of HDMR
is sensitive to the choice of reference point. According to our experience, the mean vector can always give us a satisfied result
with much less computational cost. It is also interesting to note that when Y ¼ ð0:6; . . . ;0:6Þ, in order to achieve an error of
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order Oð10�3Þ, the number of component functions is 880 while the number is 6018 when using conventional HDMR. This
again shows the advantage of the adaptive HDMR method.

Finally, it is emphasized here that using the ASGC or CSGC methods alone as in [23] to solve these high-dimensional
problems is not feasible due to the following two reasons. At first, the number of needed collocation points is significant
for such high-dimensional cases and the convergence rate is very small due to the logarithmic term shown in the error
estimation. For example, for N ¼ 500, the number of points is 167,169,001 for a third-level interpolation. Secondly, there
is a need for large memory storage to store all the high-dimensional multi-indices. Therefore, we are not able to compare
the results shown in this paper with results that can be obtained directly from the ASGC. However, through the numerical
examples, it is shown that the method presented here is indeed a useful tool for solving high-dimensional stochastic
problems.
5.7. Example 5: stochastic natural convection problem with random boundary conditions

It is interesting to also solve non-linear transient SPDEs using HDMR to investigate if the effective dimensions depend on
the type of SPDE. In the following example, a stochastic natural convection problem in a closed cavity is considered. The
problem is to find stochastic functions that describe the velocity u � uðx; t;xÞ : D� ½0; T� � C! R2, pressure
p � pðx; t;xÞ : D� ½0; T� � C! R and temperature h � hðx; t;xÞ : D� ½0; T� � C! R, such that the following equations are
satisfied:
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r � uð�;xÞ ¼ 0; in D� ½0; T� � C; ð53Þ
@uð�;xÞ

@t
þ uð�;xÞ � ruð�;xÞ ¼ �rpð�;xÞ þ Prr2uð�;xÞ þ Fðuð�;xÞ; hð�;xÞÞ; in D� ½0; T� � C; ð54Þ

@hð�;xÞ
@t

þ uð�;xÞ � rhð�;xÞ ¼ r2hð�;xÞ; in D� ½0; T� � C: ð55Þ
where Fðuð�;xÞ; hð�;xÞÞ is the forcing function in the Navier–Stokes equations and Pr is the Prandtl number of the fluid. In the
problems considered later, Fðu; hÞ is the Bousinnessq approximated buoyant force term �RaPrhg, where Ra is the thermal
Rayleigh number and g is the gravity vector.

For ease of analysis, we consider a non-dimensional form of the governing equations. The physical domain is taken to
be a closed cavity ½0;1�2. The Prandtl number Pr is set to 1.0 and the thermal Rayleigh number Ra is set to 1000. The
deterministic governing equations are solved using the second-order stabilized projection finite element method devel-
oped in [12]. The spatial domain is discretized using 30� 30 bilinear quadrilateral finite elements. Each deterministic
simulation is performed until steady-state is reached. No slip boundary conditions are enforced on all four walls. The
left wall is maintained at a higher mean temperature of 0.5. The temperature at different points on the left wall is cor-
related. This is physically feasible through, say, a resistance heater, where the mean temperature remains constant, but
material variations cause local fluctuations from this mean temperature. We assume this correlation is a Gaussian cor-
relation function:
Covðy1; y2Þ ¼ r2 exp � jy1 � y2j
2

L

 !
; ð56Þ
with L being the correlation length and r the standard deviation. The K-L expansion of the correlation for the input random
temperature is performed:



10
3

10
4

10
-4

10
-3

10
-2

10
-1

M

N
or

m
al

iz
ed

 e
rr

or
 o

f 
st

d

HDMR: θ1
 = 10-4

~O(M-2.87)

σ2 = 0.01

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

M

N
or

m
al

iz
ed

 e
rr

or
 o

f 
st

d

HDMR: θ1
 = 10-4

~O(M-2.08)

σ2 = 0.25

10
4

10
5

10
-3

10
-2

10
-1

10
0

M

N
or

m
al

iz
ed

 e
rr

or
 o

f 
st

d

HDMR: θ1
 = 2 × 10-4

~O(M-1.77)

σ2 = 2.0

Fig. 17. Convergence of the L2 normalized errors of standard deviation of the v velocity-component for different r2, where L ¼ 0:25.

10
-2

10
-1

10
0

N
or

m
al

iz
ed

 e
rr

or
 o

f 
st

d

Reference point 1: (0.5,…,0.5)
Reference point 2: (0.6,…,0.6)
Reference point 3: (0.1,…,0.1)

10
2

10
3

10
4

10
5

10
6

10
7

10
-3

# Points

Fig. 18. Convergence of the L2 normalized errors of standard deviation of the v velocity-component for three different reference points.

X. Ma, N. Zabaras / Journal of Computational Physics 229 (2010) 3884–3915 3909
hðy;YÞ ¼ 0:5þ
XN

i¼1

ffiffiffiffi
ki

p
/iðyÞYi; ð57Þ
where the Yi are assumed as i.i.d. uniform random variables on [�1,1].



Table 8
Comparison of performance for three different reference points. e ¼ 10�6 and h1 ¼ 10�4. Ni denotes the number of important dimensions and p denotes the
expansion order of the HDMR defined in Section 4.4.

Y # Terms # Points Ni p

(0.5,. . .,0.5) 287 27968 23 2
(0.6,. . .,0.6) 880 170992 33 3
(0.1,. . .,0.1) 5526 1854460 33 4
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We consider three different cases: L ¼ 0:1;r ¼ 0:05; L ¼ 0:1;r ¼ 1:0 and L ¼ 1:0;r ¼ 2:0. The coefficients of variation,
which is the ratio of the standard deviation and the mean, are 10%, 200% and 400%, respectively. The decay rate of the eigen-
values of this correlation is much faster than the exponential one of Eq. (51). Therefore, we truncate the expansion after 10
terms, i.e. the stochastic dimension is 10. The ratio between the smallest and largest eigenvalues is 10�6 and 10�14 for
L ¼ 0:1;1:0, respectively. Thus, this problem is similar to the highly anisotropic Case 2 discussed in Section 5.4. It is expected
that the problem has a low effective dimensionality and a lower-order expansion may be accurate for large input variability.
In addition, due to the highly anisotropic situation, the adaptive HDMR is expected to be most effective.

The mean and standard deviation of the v velocity component are shown in Fig. 19 when L ¼ 0:1 and r ¼ 0:05. We choose
e ¼ 10�7 and h1 ¼ 10�4. As expected, for such a small input variability, the construction of HDMR stopped after a first-order
expansion even with h1 ¼ 10�4. The results compare quite well with the reference solution which is from Monte Carlo sim-
ulation with 105 samples which shows that the first-order expansion is enough to capture the additive effects when each
dimension is acting independently. Since the error of the mean converges very fast, we only show the convergence of error
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of the standard deviation with decreasing e in Fig. 20. Only 261 collocation points are needed to achieve an error 1:69� 10�3,
which is a significant computational saving in comparison to MC.

Next, we consider the case r2 ¼ 1:0 and L ¼ 1:0. For this case of high input variability, it is expected that higher-order
terms are needed. We choose e ¼ 10�5 and h1 ¼ 10�4. The construction stopped after order 2. However, not all the terms
are needed. Only 17 component functions are in the final HDMR expansion including only 6 second-order component func-
tions which consist of only important dimensions. The total number of terms in conventional HDMR is 56 which shows the
effectiveness of the adaptive method. The mean and standard deviation of u velocity component are given in Fig. 21, which
again compares well with the MC results. The error convergence is shown in Fig. 22. Only 1085 collocation points are needed
to achieve an error 1:78� 10�3. It is noted that the convergence rate is a little slower than that of r ¼ 0:05, which is consis-
tent with Fig. 17.

Finally, we consider the extreme case L ¼ 1:0 and r ¼ 2:0. It is noted that this case may be not feasible in physical sense.
However, we still include it to demonstrate the applicability of this method. We choose e ¼ 10�5 and h1 ¼ 0:1 such that only
the first two dimensions are important. Only 356 collocation points are required to obtain a good comparison with that of
MC results, which is shown in Fig. 23. The only second-order component function is f12. By adding this term to the first-order
expansion, the error of temperature standard deviation decreases from 3:25� 10�3 to 1:86� 10�3. This example clearly
demonstrates the significance of including the important component function which captures the strong correlation effects
among important dimensions. The error convergence is given in Fig. 24.
6. Conclusions

In this paper, a novel adaptive high-dimensional stochastic model representation technique for solving high-dimensional
SPDEs is introduced. This method applies HDMR in the stochastic space and decomposes the original N-dimensional problem
into several low-dimensional sub-problems. This has been shown to be more efficient than solving the N-dimensional prob-
lem directly. Each sub-problem is solved using ASGC, where a proper error indicator is introduced to adaptively refine locally
the collocation points.

Numerical examples involving both elementary mathematical functions and stochastic fluid mechanics problems have
been conducted to verify the accuracy and efficiency of the proposed method. The numerical examples show that the num-
ber of component functions needed in the HDMR expansion for a fixed stochastic dimension depends both on the input var-
iability and the important dimensions no matter how many stochastic dimensions there are. However, it does not depend on
the type of the function, i.e. whether the SPDE is linear or nonlinear. Although, in general, lower-order expansion is enough to
capture all the input uncertainty to a good accuracy, the number of component functions increases quickly with the dimen-
sion. It is impossible to calculate all the terms through conventional HDMR in the case of extremely high-stochastic dimen-
sion. However, by using the adaptive version of HDMR, we can effectively solve the problem within a desired accuracy even
for problems with high-dimensional high input variability. On the other hand, for small variability, the first-order expansion
is accurate enough. Therefore, the HDMR is quite suitable in most real physical applications for simulating high-dimensional
stochastic problems in the area of uncertainty quantification where the correlation length is small and the input variability is
generally large and solving the N-dimensional problem directly by ASGC is not feasible. It is also shown that the convergence
rate of the proposed method is even better than that of MC for the problems considered up to 500 stochastic dimensionality.

Finally, we note that the proposed method is more computationally efficient than applying the ASGC method directly on
the function of interest or to represent the solution of an SPDE. This is due mainly to the fact that implementation of HDMR



3914 X. Ma, N. Zabaras / Journal of Computational Physics 229 (2010) 3884–3915
requires less memory storage and avoids the heavy surplus calculation typical of high-dimensional problems. However, it is
emphasized that HDMR may not be of practical use for interpolating arbitrary mathematical functions where sometimes all
2N terms might be required, for example, in the case of a function with multiplicative nature.
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