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a b s t r a c t

Many areas of material science involve analyzing and linking the material microstructure with macro-
scale properties. Constructing low-dimensional representations of microstructure variations would
greatly simplify and accelerate materials design and analysis tasks. We develop a mathematical strategy
for the data-driven generation of low-dimensional models that represents the variability in polycrystal
microstructures while maintaining the statistical properties that these microstructures satisfy. This strat-
egy is based on a nonlinear dimensionality reduction framework that maps the space of viable grain size
variability of microstructures to a low-dimensional region and a linear dimensionality reduction tech-
nique (Karhunen–Loève Expansion) to reduce the texture representation. This methodology allows us
to sample microstructure features in the reduced-order space thus making it a highly efficient, low-
dimensional surrogate for representing microstructures (grain size and texture). We demonstrate the
model reduction approach with polycrystal microstructures and compute the variability of homogenized
properties using a sparse grid collocation approach in the reduced-order space that describes the grain
size and orientation variability.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Mathematical representation of microstructures is essential for
allowing microstructure-sensitive design applications (optimizing
microstructures leading to optimal properties) [1], exploring
microstructure/property/process spaces [2], computing error-bars
of materials properties induced by microstructural uncertainty
[3,4], allowing multiscale modeling, among others. Concurrently,
recent advances in high throughput characterization of polycrys-
talline microstructures have resulted in huge data sets of micro-
structural descriptors and image snapshots. To efficiently utilize
these large scale experimental data for the above mentioned appli-
cations, it is important to efficiently compress the data into low-
dimensional models.

In this work, a microstructure is described by its grain size and
texture. Our interest is on constructing reduced-order representa-
tions of polycrystalline microstructures based on available experimen-
tal or simulation-based data (microstructural snapshots). Given a
set of microstructures having the same constituent elements and
the same processing history, each microstructure may be visually
different from another, but will satisfy some statistical correlations
ll rights reserved.
that inherently define its material distribution (volume fraction of
one constituent element) and/or the processing history (a specific
grain size distribution and preferred texture). Instead of storing
and manipulating this large data set of microstructures directly, a
reduced-order model that satisfies and respects these statistical
correlations while efficiently encoding and quantifying the varia-
tions in this data set would significantly accelerate and simplify
analysis. This low-dimensional model can then be used to com-
pletely represent the microstructure variability.

In earlier work [5], we developed a linear embedding methodol-
ogy to model the topological variations of composite microstruc-
tures satisfying some experimentally determined statistical
correlations. A model reduction scheme based on Principal Compo-
nent Analysis (PCA) was developed. This model was successful in
reducing the representation of two-phase microstructures. How-
ever, as most of the data sets contain essential nonlinear structures
that are invisible to PCA, it cannot be easily extended to the case of
polycrystals.

In [6], a nonlinear dimensionality reduction (NLDR) strategy
was proposed to embed data variations into a low-dimensional
manifold that could serve as the input model for subsequent anal-
ysis. This methodology was applied to construct a reduced-order
model of thermal property variation of a two-phase microstruc-
ture. The model was subsequently utilized as a stochastic input
model to study the effect of material uncertainty on thermal
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diffusion. Our focus in this paper is to extend this nonlinear dimen-
sionality reduction methodology to develop a low-dimensional
representation of polycrystalline microstructures with attention given
at present to grain size distribution. This problem poses significant
challenges, particularly the following: (a) The low-dimensional
model must have the ability to reconstruct the grain sizes of differ-
ent microstructures, (b) this can be incorporated by using a notion
of distance between microstructures [6], however the choice of the
distance metric is not straight forward, and (c) the low-dimen-
sional model must be able to interpolate between two microstruc-
tures (construct a microstructure between two neighboring (in the
sense of the metric used) microstructures). This last item is impor-
tant as our goal is to be able to sample in the reduced-order surro-
gate microstructure space for estimating property variations
induced by microstructure uncertainty.

Besides grain size, material properties of polycrystalline micro-
structures are also highly dependent on their texture. The texture
of a microstructure is usually represented by a set of axis-angle de-
scribed orientations (Rodrigues parametrization) of individual
grains. Each orientation contains three components, which can
be totally random if no information is assumed. In reality, however,
materials usually acquire certain preferred texture after process-
ing. This introduces correlations among grain orientations and en-
able us to perform model reduction techniques on the texture.
Some linear approaches have shown success in reducing Orienta-
tion Distribution Function (ODF) [7–9], where the mechanical
properties of the microstructure were updated based on the evolu-
tion of ODF according to a conservation equation, in which the
microstructure was assumed to be continuous. In this paper, a dis-
crete microstructure model is adopted, in which the texture is con-
sisted of finite number of orientations. Karhunen–Loève Expansion
(KLE) is directly applied to pre-processed grain orientations. The
change of the texture and therefore the material properties corre-
spond to elastic distortion inside the microstructure domain. The
grain size feature is assumed here to be independent of texture.
Therefore, model reduction is applied to them separately. After
reducing both grain size and texture, the low-dimensional repre-
sentation is transformed to a hypercube where sampling tech-
niques such as sparse grid collocation [10] can be applied with
high efficiency.

One of our interests is in computing the variability (e.g. the
probability distribution function (PDF)) of macroscopic mechanical
response of a polycrystal (e.g. stress/strain response) subjected to
homogenized compression. The grain size distribution is given in
terms of moments (e.g. 1st-moment refers to mean volume, sec-
ond-moment determines standard deviation and higher-order mo-
ments further constrain the grain size distribution), and the initial
texture is assumed to be obtained from certain random process.
Here, we consider that the property of interest F is a function of
grain size distribution and texture, F(GS,TX). We are interested to
compute the PDF, P(F). Our basic approach is first to solve a series
of stochastic partial differential equations (SPDEs) controlling the
material property evolution using the sparse grid collocation
method that constructs an interpolant of the microstructure
mechanical response in the stochastic space. Then, the material re-
sponse is fully defined in the stochastic space using the interpola-
tion basis functions. One can easily construct a histogram and the
PDF can be computed through Kernel Density Estimation [11].

In [3], the Maximum Entropy method was used to quantify the
stress response uncertainty due to microstructure variation. Even
though both approaches are data-driven, the methodology dis-
cussed in this paper produces an interpolant (with quantifiable er-
ror) of the stress/strain response in the stochastic space of grain
size distribution and texture. This interpolant allows us to compute
the stochastic stress/strain response of any other (interpolated)
microstructure in the space of allowable microstructures. The Max-
Ent on the other hand provides a distribution from which viable
microstructures can be sampled and interrogated to produce via
Monte Carlo methods the statistical moments of the stress/strain
response. In addition, the work in [3] did not explicitly account
for grain size effects in the crystal plasticity model employed.

The outline of this paper is as follows: In the next section, the
central idea of the nonlinear dimension reduction strategy is de-
scribed. Section 3 introduces a grain size measurement of micro-
structures and a methodology of interpolating polycrystalline
microstructures leading to viable microstructures that satisfy the
statistical grain size distribution correlations. Section 4 introduces
the Karhunen–Loève Expansion on texture space. Section 5 briefly
reviews the Adaptive Sparse Grid Collocation method for solving
problems governed by stochastic differential equations. The crystal
plasticity deterministic solver is briefly described in Section 6. Sec-
tion 7 presents several examples demonstrating the various steps
of the approach and the propagation of the microstructural uncer-
tainty in the variability of homogenized mechanical properties. We
conclude in Section 8 with a brief discussion on open issues and fu-
ture avenues of research.
2. Model reduction theory

Features of polycrystals are composed of two aspects: topology
and texture. The first aspect regards geometry characters, such as
grain shape and grain size, while the second is the orientation dis-
tribution of grains. For a polycrystalline microstructure, its mate-
rial properties are mostly determined by the grain size and
orientation distribution. In order to model the uncertainty of
microstructures, the two features are considered as random fields.
Model reduction techniques are applied to grain size and texture
separately, and then their low-dimensional representations are
combined to fully represent a microstructure. In this section, focus
is given on a nonlinear model reduction scheme performing on the
grain size space. The model reduction on texture will be introduced
in Section 4.

Fig. 1 shows multiple microstructures that satisfy some specific
experimentally determined statistics of grain size distribution.
Each microstructure that satisfies the given statistics of the grain
size distribution is a point that lies on a curve (manifold) embed-
ded in a high-dimensional space. The problem of ‘manifold learn-
ing’ as applied to this situation is as follows: given a set of N
unordered points belonging to a manifold M embedded in a high-
dimensional space Rn, find a low-dimensional region A � Rd1 that
parameterizes M, where d1� n.

The process of learning the nonlinear low-dimensional struc-
ture hidden in a set of unorganized high-dimensional data points
is known as the manifold learning problem. Principal Component
Analysis (PCA), Karhunun–Loève Expansion (KLE) and Multi-
Dimensional Scaling (MDS) [12] are classical methods in manifold
learning. These methods extract optimal mappings when the man-
ifold is embedded linearly or almost linearly in the input space.
However, in most cases of interest, the manifold is nonlinearly
embedded in the input space, making the classical methods of
dimension reduction highly approximate.

Recently two new approaches have been developed that com-
bine the computational advantages of PCA with the ability to ex-
tract the geometric structure of nonlinear manifolds. One set of
methods takes a bottom-up approach, i.e they try to preserve the
local geometry of the data. They aim to map nearby points on
the manifold to nearby points in the low-dimensional representa-
tion. Such methods, Locally Linear Embedding (LLE) [13], Laplacian
Eigen Maps, Hessian Eigen Maps, essentially construct a homeo-
morphic mapping between local sets in the manifold to an open
ball in a low-dimensional space. The complete mapping is a union



(a)

(b)

(c)
Fig. 1. Slices of 3D microstructures satisfying different constraints of the grain size
(given here in terms of grain volume, the domain of microstructure is 1 mm3)
distribution: (a) constant mean grain volume (0.0185 mm3), (b) constant mean
grain size (0.0185 mm3) and second-order moment (3.704 � 10�4 mm6), and (c)
constant grain size (0.0185 mm3), second-order moment (3.704 � 10�4 mm6) and
third-order moment (8.637 � 10�6 mm9).

Fig. 2. A schematic showing the manifold in the high- and low-dimensional spaces.
The data points shown here are in 3D but the intrinsic dimensionality of the
manifold is two.

570 Z. Li et al. / Computational Materials Science 49 (2010) 568–581
of these local maps. On the other hand, the alternate set of ap-
proaches towards nonlinear model reduction take a top-down ap-
proach [14]. Such global approaches, like the Isomap and its
numerous variants, attempt to preserve the geometry at all scales.
They ensure that nearby points on the manifold (with distance
defined via a suitable metric) map to nearby points in the low-
dimensional space and faraway points map to faraway points in
the low-dimensional space. The distance between original points
is identical to that between their low-dimensional counterparts.
Though both approaches are viable, we focus our attention in the
current work to global methods of nonlinear dimension reduction.

The basic premise of the Isomap [15,16] algorithm is that ‘only
geodesic distances reflect the true low-dimensional geometry of
the manifold’. The geodesic distance (between two points) on a
manifold can be intuitively understood to be the shortest distance
between the two points along the manifold (see Fig. 2 for an
illustration).

Subsequent to the construction of the geodesic distance be-
tween the sample points {xi} in the high-dimensional space, the
Isomap [15] algorithm constructs the low-dimensional parametri-
zation simply as a set of points {yi} lying in a low-dimensional
space that most accurately preserve the geodesic distance. That
is, the distance between two points yi and yj in low-dimensional
space should be the same with the geodesic distance between their
corresponding points xi and xj in the high-dimensional space. This
property is called isometry. With the Isomap algorithm, given a set
of N-unordered points belonging to a manifold M embedded in a high-
dimensional space Rn, a low-dimensional region A 2 Rd1 is computed
which is isometric to M, with d1� n.

Since we have no notion of the geometry of the manifold to start
with (hence cannot construct the true geodesic distances), we
approximate the geodesic distance using the concept of graph dis-
tance DGði; jÞ, thus the distance of points far away is computed as a
sequence of small hops. This approximation, DGði; jÞ, asymptoti-
cally matches the actual geodesic distance DMði; jÞ in the limit of
large number of samples [6]. As discussed before, the key to a good
model reduction and reconstructions is a viable measurement of
microstructure. Since the important feature we are looking to
embed and recreate is the grain size distribution, we choose this
feature as the measurement (see Section 3).

Having computed the pairwise distance matrix between the gi-
ven microstructures, one can compute the location of N points in a
reduced-order surrogate space, yi 2 Rd1 such that the distance be-
tween these points is arbitrarily close to the given distance matrix.
Multi-Dimensional Scaling (MDS) methods allow this mapping [6].
The intrinsic dimension d1 of an embedded manifold is linked to
the rate of convergence of the length functional of the minimal
spanning tree of the geodesic distance matrix of the unordered
data points in the high-dimensional space [6]. The rate of change
of the length functional as more number of points are chosen is re-
lated to the dimensionality of the manifold via a simple relation
log(L) = alog(N) + �, where a = (d1 � 1)/d1. The intrinsic dimension-
ality, d1, can be estimated by finding the length functional for dif-
ferent number of samples N and subsequently finding the best fit
for a.

The procedure above results in N points in a low-dimensional
space Rd1 . The geodesic distance and the MDS step result in a
low-dimensional convex region A � Rd1 . Using the N samples,
the reduced space is given as a convex hull A ¼ convex hullðyiÞ
that parameterizes the grain size space. Since microstructures in
M satisfy all the required grain size properties, they are here taken
to be equally probable to occur. That is, every point in the high-
dimensional stochastic space M is equiprobable. The convex hull
can be mapped to a unit hypercube with the same dimensionality
d1. Since the microstructures are equiprobable, we consider each of
the dimensions of the hypercube as defining an independent
uniform random variable. These random variables define our
stochastic support space. Since A serves as the surrogate space
of M, we can access the variability in M by sampling over A, or
equivalently the hypercube, which is the sampling space in the
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sparse grid collocation method. Unfortunately, this requires not
only the mapping M!A just described but also the inverse map-
ping (microstructure reconstruction) A!M. This microstructure
reconstruction will be discussed in Section 3.2. The overall steps of
the procedure are summarized in Fig. 3. Note that here the surro-
gate space A is mapped to a unit d1 � dimensional hypercube to
allow interfacing this procedure with sparse grid collocation tech-
niques [10]. In such collocation methods, the sampling points are
defined on a hypercube. These collocation methods have been
shown to be efficient in interfacing with deterministic solvers of
e.g. deformation, diffusion, flow, etc. in random media, thus allow-
ing modeling the effect of microstructural uncertainty on material
properties.
3. Microstructure representation and reconstruction
methodology

3.1. Microstructure representation: grain size vector of a
microstructure

The high-dimensional representation of a microstructure topol-
ogy feature in this paper is chosen to be the grain size distribution,
namely the volume of grains, for its great effect on mechanical
properties of a microstructure. A polycrystalline microstructure
contains a finite number of grains and each grain has its own size.
If the size of each grain is given, the microstructure can be non-un-
iquely determined. The only differences in geometry of these
microstructures are the shapes and arrangement of the grains,
which do not have significant effect on microstructure mechanical
properties and can be neglected especially when the Taylor
homogenization hypothesis is adopted. Here, we treat microstruc-
tures having the same grain size distribution to be in the same
class. A measurement that uniquely represents this kind of micro-
structures is needed. In this paper, the measurement is chosen as
the grain size (in terms of volume) vector sorted by ascending
order (we refer it as ‘sorted grain size vector’) and the term ‘micro-
structure’ in the following refers to the grain size feature instead of
a microstructure realization. For example, consider a cubic
microstructure containing n = 4 grains whose volumes are given
as GS = {0.3 mm3,0.2 mm3,0.4 mm3,0.1 mm3}. Rearranging the
grain size in ascending order, the new representation of this
Fig. 3. The various steps in a data-driven model reduction of polycrystal microstructures
This convex region defined by the data points in A is mapped to a unit hypercube. Each s
be reconstructed using the given data.
microstructure is GS = {0.1 mm3,0.2 mm3,0.2 mm3,0.4 mm3}. This
resulting vector is chosen as the representation of this kind of
microstructure. After being sorted, microstructures belonging to
the same class result in the same grain size vector, while different
classes give different vectors. This choice is selected as it is easy to
express and satisfy the given constraints on grain size (mean, stan-
dard deviation, higher-order moments, etc.) and in addition, the
(non-unique) reconstruction of a microstructure with given grain
sizes is straightforward. In the meantime, adopting Euclidean dis-
tance as the metric, we can measure the difference between micro-
structures represented by sorted grain size vector. To estimate the
difference between two microstructures, A 2M and B 2M, we
first sort the grain sizes (effectively, grain volume) by ascending or-
der. The Euclidean distance, DGðA;BÞ, between them is defined as
follows:

DðA;BÞ ¼
Xn

i

GSA
i � GSB

i

� �2
 !1=2

ð1Þ

Fig. 4 shows an example of using sorted grain size vector to
measure the difference between two 54-grain microstructures.
Fig. 4a depicts the sorted grain volume distribution of two micro-
structures having the same mean grain size. Fig. 4b measures the
difference in each grain between the microstructures, which also
tells how much microstructure A is different from microstructure
B. The dimensionality of this grain size vector is determined by
the number of grains of a microstructure. For a microstructure con-
taining 54 grains, its representation is 54-dimensional. As the
mean grain size is fixed, there are only 53 independent dimensions.
If more constraints are added, the dimensionality will be further
reduced.
3.2. Microstructure reconstruction

Given a set of samples {xi}, i = 1, . . . ,N in manifold M, the non-
linear dimensionality reduction strategy (Section 2) convert these
points into a set of points {yi}, i = 1, . . . ,N belonging to a convex
set A. This convex region A � Rd1 , defines the reduced representa-
tion of the space of microstructures. As A is the surrogate space of
M, one can access the complete variability in the topology and
property distribution of grain size in M by simply sampling over
. The high-dimensional microstructures are mapped to a low-dimensional region A.
ample point on this hypercube corresponds to a viable microstructure that needs to



Fig. 4. (a) Two microstructures represented by sorted grain size vectors. (b) The difference between the two sorted grain size vectors.
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the region A. But we have no knowledge of the image of a point in
the microstructural space M corresponding to an arbitrary point
y 2A. For a usable reduced-order model of the microstructure
space, an explicit mapping F�1 from A to M has to be constructed.

As shown in Fig. 3, the reduced-dimensionality space A is used
as the surrogate space from which acceptable microstructures
need to be sampled (at arbitrary points). The procedure of recon-
structing a microstructure x 2M from the low-dimensional space
A � Rd1 is as follows: (1) Generate a point in the low-dimensional
space y 2A. (2) Find the m nearest neighbors of y and denote them
as yi,i = 1,. . .,m. (3) Find the microstructures xi,i = 1, . . . ,m in the
high-dimensional space M � Rn that are corresponding to yi,
i = 1, . . . ,m. Based on isometry, x could be computed following a
linear interpolation algorithm:

x ¼
Xm

i¼1

Wixi; Wi ¼
1

Dðyi ;yÞPm
j¼1

1
Dðyj ;yÞ

ð2Þ

Note that the metric in the reduced space A � Rd1 is the Euclid-
ean distance and the points xi 2M were the sorted grain size vec-
tors defined earlier. The equation above demonstrates that the new
generated microstructure can be interpolated by its nearest neigh-
bors weighed by the reciprocal distances between their corre-
sponding low-dimensional points. The mean grain size of the
interpolated microstructure automatically equals the required va-
lue because of the linearity of Eq. (2). However, when the micro-
structures on the manifold are constrained by higher-order
moments, the resulted microstructure by interpolation cannot sat-
isfy all the constraints, which means it does not lie on the manifold,
but has slight deviation. To obtain the microstructure satisfying all
the given moments, we need to modify the grain sizes. This proce-
dure is referred to as projecting the image onto the manifold in [6].
An algorithm implemented in the current work that can adjust the
grain size distribution to satisfy the second- and third-moments of
grain size is briefly described below.

Controlling the grain size distribution to satisfy a given second-
order moment of the grain size distribution is straightforward.
Given a grain size vector whose mean size is M1, we would like to
adjust the grain sizes so that its second-order moment is M2. To
do this, we first transform the original grain size vector to one that
has zero mean by subtracting M1 from each component. We next
weight each component with the ratio of the expected standard
deviation to the current standard deviation. The algorithm is as
follows:

Step 1: E1 ¼ 1
n

Pn
i¼1Si ¼ M1;

Step 2: Si = Si �M1;
Step 3: E2 ¼
Pn

i¼1
S2

i

n ;

Step 4: a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M2�M2

1
E2

q
;

Step 5: Si = aSi.

Having the zero-mean grain size vector satisfying the expected
standard deviation, the final grain size vector that satisfies both the
mean size and second-order moment can be obtained by adding M1

to its components, i.e. Si = M1 + aSi, for i = 1, . . . ,n.
The control the third-order moment is more complicated. Two

iterative processes are needed to accomplish this task. The basic
idea is to find an intersection vector of two surfaces. One surface
is composed of microstructures satisfying the first two moments
and the other one is defined by the third-order moment M3. Still,
the mean size M1 is subtracted from the grain size vector. The first
three target moments of the zero-mean grain size vectors are then
equal to bM1 ¼ 0; bM2 ¼ M2 �M2

1; and bM3 ¼ M3 � 3M1M2 þ 2M3
1,

respectively. The complete algorithm is as follows:

Step 1: bSi ¼ Si �M1;
Step 2: bS0i ¼ bSi; and E1 ¼ 1

n

Pn
i¼1Si;

Step 3: bSi ¼ bSi � E1;
Step 4: E2 ¼ 1

n

Pn
i¼1S2

i ;

Step 5: bSi ¼ bSi

ffiffiffiffiffiffibM2
E2

r
;

Step 6: loop
di ¼
3bS2

i

n
;

d ¼
X
i¼1

nd2
i ; E3 ¼

1
n
bS3

i ;

m ¼ bM3 � E3;bSi ¼ bSi þ
m
d

di;

if jmj < cutoff; break;
Step 7: error ¼ normðbS0i � bSiÞ;
Step 8: if error < cutoff, go to step 9, else go to step 1;
Step 9: Si ¼ M1 þ bSi.

The grain size vector {Si, i = 1, . . . ,n} now satisfies all the three
given moment constraints.

Reconstruction of a microstructure with a known grain size
distribution is a difficult inverse problem and for this task, one
can employ a combination of grain growth simulation methods
including phase-field methods [17]. In the current work, the
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realization of the 3D microstructure is not necessary. An example
of a 3D microstructure that satisfies given moment constraints is
shown in Fig. 5.

Given the methodology discussed in Sections 2 and 3, the map-
ping between high- and low-dimensional stochastic space of grain
size feature is constructed based on a isometric nonlinear model
reduction methodology. In the next section, the representation
and model reduction on texture space will be introduced.

4. Texture modeling

Other than grain size, the properties of a polycrystalline micro-
structure are highly dependent on its texture. For the case of a dis-
crete microstructure containing moderate number of grains, the
texture effect is usually much more significant than the grain size
effect. To examine the effect of variability in initial texture on the
final property of the microstructure, the texture is defined as a ran-
dom field, whose variables are orientation components of the indi-
vidual grains. In this paper, the orientation of a grain is defined by a
rotation around an axis and is known as Rodrigues parametriza-
tion, an axis-angle representation consisted of three components:

r ¼ wtan
/
2

ð3Þ

where r = {r1, r2,r3} are the three Rodrigues components; w =
{w1,w2,w3} gives the direction cosines of the rotation axis with
respect to microstructure coordinates; and / is the rotation angle.

In nature, the orientation of a grain should be totally random if
no constraint is taken into account. Through certain deformation,
the orientation is changed due to grain rotation and distortion,
and therefore forms preferred texture throughout the entire micro-
structure. For a set of independently randomly distributed orienta-
tions, it is difficult to perform dimensionality reduction because of
lack of intrinsic correlations. However, processed microstructures
through certain deformation mode gain preferred texture that
are implicitly correlated among orientations. Several linear dimen-
sionality reduction techniques have already been successfully
implemented in reducing the Orientation Distribution Function
(ODF) to lower-dimensional representations [7,9]. In those works,
the material deformation simulation was conducted using an
ODF based scheme, where the microstructure was assumed to be
Fig. 5. A 3D microstructure with 64 grains with prescribed mean grain size value
(0.015625 mm3). The reconstruction is based on a grain-growth model imple-
mented using a phase-field method.
continuous and its macroscopic properties were computed by
integrating over the entire fundamental zone of Rodrigues space.
The ODF was updated following the ODF conservation equation
[18].

In the current work, however, the microstructure is discretely
represented by an ensemble of grains, each of which possesses
an orientation consisted of three axis-angle parameters (Eq. (3)).
The update of the texture is obtained by estimating the elastic dis-
tortion inside the grains [19]

ma
t ¼ FeðtÞma

0

na
t ¼ Fe�TðtÞna

0 ð4Þ

where ma, na are the direction and normal of the slip system a and
Fe is the elastic deformation gradient. In this case, the texture is de-
scribed by a finite number of orientations (the same with grain
number), leading only certain points in Rodrigues space having a
non-zero ODF value. Thus, the appropriate method to reduce the
texture dimension should be directly preformed on grain orienta-
tions, instead of assuming a continuous field in Rodrigues space.

Here, we define the orientation vector representing the micro-
structure texture as

sðrÞ ¼ r1
1; r

1
2; r

1
3; r

2
1; r

2
2; r

2
3; . . . ; rn

1; r
n
2; r

n
3

� �T ð5Þ

where n is the total number of grains. Texture s 2T, in which
T � R3n is the stochastic space of texture. The Rodrigues represen-
tation is defined in Eq. (3). fri

1; r
i
2; r

i
3g are the three orientation com-

ponents of the ith grain. The initial orientations of grains are
provided in the form of Eq. (5) through input files. The initial orien-
tation matrix of grain i (i = 1, . . . ,n) can be calculated by

Ri
0 ¼

1
1þ ri

0 � ri
0

I 1� ri
0 � ri

0

� �
þ 2 ri

0 � ri
0 þ I� ri

0

� �� �
ð6Þ

where ri
0 is the initial orientation for the ith grain. Thus the initial

slip system a of grain i, represented in the sample coordinate sys-
tem, can be determined by

mi;a
0 ¼ Ri

0ma
local

ni;a
0 ¼ Ri

0na
local ð7Þ

where a = 1, . . . ,12 for FCC materials and ma
local and na

local are the slip
direction and plane normal, respectively, in the local (crystal) coor-
dinate system. mi;a

0 and ni;a
0 define the initial orientation of grain i

and are needed for computing the resolved shear stresses and up-
date the plastic deformation in the crystal plasticity simulation.

Although orientations are usually defined within the funda-
mental zone of Rodrigues space due to the crystal symmetry, the
range of Rodrigues components are in essence from negative infin-
ity to positive infinity. Thus, the vector s has no constraint. Our
goal is to find a lower-dimensional space C � Rd2 as the surrogate
space of T.

For a microstructure that underwent through a sequence of
deformation processes controlled by random variables x =
{x1,x2, . . .} , its texture will also depends on x. While the explicit
relationship between s and x is not easy, neither necessary, to
find, we adopt the Karhunen–Loève Expansion (KLE) to represent
the random texture using a series of intermediate uncorrelated
parameters g, which are implicitly dependent on x. Given a set
of N texture samples, the unbiased estimate of the covariance
matrix of these texture vectors is

eC ¼ 1
N � 1

XN

i¼1

ðsi � �sÞTðsi � �sÞ; �s ¼ 1
N

XN

i¼1

si ð8Þ

si is the ith realization of s 2T and N is the total number of known
realizations, namely the sample number. The truncated Karhunen–
Loève Expansion of the random vector s is then written as
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sðr;xÞ ¼ �sðr;xÞ þ
Xd2

i¼1

ffiffiffiffi
ki

p
/iðrÞgiðxÞ ð9Þ

where /i, ki are the ith eigenvector and eigenvalue of eC, respec-
tively; {gi(x)} is a set of uncorrelated random variables having
the following two properties

EðgiðxÞÞ ¼ 0;
EðgiðxÞgjðxÞÞ ¼ dij; i; j ¼ 1; . . . ;d2 ð10Þ

and their realizations are obtained by

gðjÞi ¼
1ffiffiffiffi
ki
p sj � �s;/i

	 

l2
; j ¼ 1; . . . ;N; i ¼ 1; . . . ;d2 ð11Þ

where h�,�i denotes the scalar product in RN . Since the covariance
function is symmetric and positive definite, all the eigenvalues are
positive real numbers and the eigenvectors are mutually orthogonal
and they span the space in which s(r,x) belongs to. The summation
in Eq. (9) is mean square convergent and usually truncated after few
dominant terms, which preserve most information of the vector s.

The truncated realizations of fgðjÞg 2 C � Rd2 are treated as re-
duced texture representations, which is analogous to the reduced
grain size samples fyig 2A. The only constraint that we know
about the random variables {g(j)} is from Eq. (10). This distribution
can be easily derived using Maximum Entropy Principle (MaxEnt)
[9]. Only in a very few special cases, the uncorrelated Gaussian ran-
dom variables are not independent [20] and our example is not in
that category. Therefore, here we treat g as a set of independent
random variables that are normally distributed around 0. A conve-
nient method to transform g to random variables f that are uni-
formly distributed within the hypercube ½0;1�d2 is based on the
Rosenblatt transformation [21]. The distribution of f is in fact the
cumulative distribution functions (CDF) of g.

f1 ¼ Ug1
ðg1Þ

f2 ¼ Ug2 jg1
ðg2jg1Þ ¼ Ug2

ðg2Þ

..

.

fd2
¼ Ugd2

jg1 ...gd2
�1ðgd2

jg1 . . . gd2
� 1Þ ¼ Ugd2

ðgd2
Þ ð12Þ

where U(�) is the standard normal CDF and in the current case is

Ugi
ðgiÞ ¼

1
2

1þ erf
giffiffiffi

2
p
� � �

ð13Þ

For a given point in the hypercube f 2 ½0;1�d2 , its corresponding
point g from the original distribution is naturally found to be

gi ¼ U�1ðfiÞ; i ¼ 1; . . . ; d2 ð14Þ

which can immediately give us a texture vector using Eq. (9).
Based on the analysis above, each microstructure h (with both

grain size and texture features) that belongs to the high-
dimensional stochastic space H ¼M�T, can be presented by
l(y,g) in the low-dimensional surrogate space L ¼ ðA� CÞ �
Rd ðd ¼ d1 þ d2Þ.

A mapping from L to H can be constructed for sampling allow-
able microstructure features. Define the stochastic model for the
feature variation as F�1ðnÞ : L!H, where n = {n1, . . . ,nd} is a
random vector chosen from L. This low-dimensional stochastic
model F�1 for the microstructure is the input to the SPDEs defin-
ing the crystal plasticity problem. For the grain size feature, this
mapping is described in Section 3.2; for texture, the mapping is di-
rectly performed by Eq. (9), where F�1ðgÞ : g! s.

Mapping the low-dimensional space to a hypercube having
the same dimensionality [6], the uncertainty of the mechanical
property of the microstructure can be efficiently investigated
using the Adaptive Sparse Grid Collocation (ASGC) method. It
is a stochastic collocation procedure that solves stochastic partial
differential equations (SPDEs) by computing the solution at var-
ious sample points, n, from this space, L. Each of the sample
points corresponds to a microstructure that can be interrogated
to evaluate its mechanical response. The sparse grid collocation
approach will then create an interpolant of the mechanical
response in the d-dimensional stochastic space of the random
microstructures.

5. Sparse grid collocation

In the previous sections, the grain size and texture of a polycrys-
talline microstructure have been reduced to a set of lower-dimen-
sional representations as the input to stochastic simulation. A
highly efficient, stochastic collocation based solution strategy is
used to solve for the evolution of mechanical response. This section
briefly reviews the adaptive sparse grid collocation method for
solving SPDEs. For details, the interested reader is referred to [10].

The basic idea of sparse grid collocation is to approximate the
multi-dimensional stochastic space L using interpolating func-
tions on a set of collocation points fnig

M
i¼1 2L. The collocation

method collapses the multi-dimensional problem (based on the
Smolyak algorithm) to solving M (M is the number of collocation
points) deterministic problems. One computes the deterministic
solution at various points in the stochastic space and then builds
an interpolated function that best approximates the required
solution. Notice, during the process, the mapping F�1 from low-
dimensional surrogate L to high-dimensional microstructural
space H needs to be implemented, so that the deterministic solver
can work.

In the context of incorporating adaptivity, Newton-Cotes grid is
utilized with equidistant support nodes. Hierarchical basis is used
in constructing the interpolant. The interested function u(t,n) can
be approximated by

ûd;qðt; nÞ ¼
X
kik6dþq

X
j2Bi

xi
jðtÞ � ai

jðnÞ ð15Þ

The mean of the random solution is evaluated as:

Eðûd;qðtÞÞ ¼
X
kik6dþq

X
j2Bi

xi
jðtÞ �

Z
L

ai
jðnÞdn ð16Þ

where q is the depth (level) of sparse grid interpolation and d is the
dimensionality of stochastic space. Bi is a multi-index set. xi

j is the
hierarchical surplus, which is the difference between the function
value u(t,n) at the current point n and interpolation value
ûd;q�1ðt; nÞ from the coarser grid in the previous level. ai

j is the d-
dimensional multilinear basis functions defined by tensor product.
For the estimation of higher-order moments (kth-order) of the func-
tion of interest, we only need to change u to uk. The function of
interest u and its interpolation û in the current work are the volume
average equivalent stress of a polycrystalline microstructure at an
equivalent strain of 0.2.

With increasing level of interpolation, new support nodes are
added to the hypercube if the error indicator

ci
j ¼
kxi

j �
R
L

ai
jðnÞdnkL2

kEkik�d�1kL2

ð17Þ

is larger than a threshold �. The error indicator ci
j measures the con-

tribution of each term in Eq. (16) to the integration value (mean of
the interpolated function) relative to the overall integration value
computed from the previous interpolation level. The convergence
properties (e.g. error versus threshold � and error versus number
of collocation points for a given �) are discussed in [10].

After the ASGC has been performed, the solutions of the SPDEs,
namely the mechanical response of the random microstructures



Fig. 6. A comparison of the simulated and experimental results.
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has been computed as an interpolant in the stochastic support
space that defines the microstructure variability. Using this high-
dimensional interpolant of the mechanical response, one can com-
pute statistical quantities of interest such as realizations, moments
and the probability density function (PDF) using kernel density
estimation [11].

6. Deterministic solver

We are interested to compute the variability of the macroscopic
mechanical response of polycrystalline microstructures subjected
to homogenized compression in the presence of uncertainty in
grain size and texture. The deterministic solver is based on a
rate-independent crystal plasticity constitutive model developed
in [19]. A multiplicative decomposition of the deformation gradi-
ent into an elastic and plastic part, F = FeFp, is used. By comparing
the resolved shear stress with the slip resistance on specific slip
system, active slip systems can be determined, which control the
hardening of the crystals. The grain size effect is incorporated by
explicitly introducing a grain size parameter into the Taylor hard-
ening law [22]:

ŝ� ŝ0 ¼ alb
ffiffiffiffi
q
p ð18Þ

where

_q ¼
X
j

1
Lgb
þ k1

ffiffiffiffi
q
p � k2q

� �
j _cjj ð19Þ

The first term in Eq. (19) represents a geometric storage due to
lattice incompatibility, describing the grain boundary hardening. Lg

is the grain size parameter, which is effectively the equivalent
diameter of the grain [23]. ŝ is the single crystal flow strength, ŝ0

is the initial yield strength, a is a constant usually chosen to be
1/3, b is the Burgers vector, l is the shear modulus, q is the density
of dislocations, and _cj is the strain rate of slip system j. k1 and k2

are constants that can be determined from observations. The sec-
ond term in Eq. (19) describes storage through a statistical mea-
sure of forest dislocation, describing the dislocation interaction
hardening inside grains. The last term in Eq. (19) represents a dy-
namic recovery rate that renders dislocation segments inactive as
they rearrange themselves [22].

The elastic and plastic deformation gradients can also be up-
dated after calculating the incremental shear strain, which is deter-
mined by setting the resolved shear strain equal to the slip
resistance. The Cauchy stress for each grain is calculated by

T ¼ CeEe ð20Þ

where Ee ¼ 1
2 ðF

eT Fe � IÞ is the strain tensor and Ce is the fourth-or-
der elasticity tensor expressed in the microstructure coordinate
system.

The deformation of the microstructure follows the Taylor
hypothesis, in which all grains are assumed to be subject to the
same deformation gradient. Under Taylor hypothesis, a realization
of the microstructure is not necessary and the interactions be-
tween grains are neglected. This is a commonly used method for
computing the homogenized macroscopic properties of materials
in a stochastic simulation due to its high computational efficiency.
Macroscopic properties, such as stress and strain, are computed as
the volume average of the microscopic values for different grains.
For example, the macroscopic Cauchy stress T and average plastic
rate of deformation D are calculated in the following form:

T ¼ Th i ¼ 1
VðBÞ

Z
VðBÞ

TdV ð21Þ

D ¼ Dp	 

¼ 1

VðBÞ

Z
VðBÞ

Dp dV ð22Þ
Accordingly, the macroscopic Von-Mises equivalent stress and
equivalent strain are calculated in the form of

�reff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

T0 � T0
r

ð23Þ

where T0 is the deviatoric part of T, and

�eeff ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

D � D
r

dt ð24Þ

Utilizing this deterministic solver, several cases were consid-
ered and compared with available experimental data. The micro-
structure of interest consists of 64 grains each of which is
assigned a random orientation. Nickel is selected as the material
with parameters in Eqs. (18) and (19) being s0 = 20 MPa,
b = 2.49 � 10�7 mm, k1 = 1.15 � 105 mm�1, k2 = 3.14, and the three
independent elastic constants are C11 = 247 GPa, C12 = 147 GPa,
C44 = 125 GPa [22,24]. By varying the domain size of the micro-
structure, the effective stress of different mean grain size micro-
structures subjected to compression are computed and plotted at
a series of strains (from 5% to 20%). Comparing with the experi-
mental data [22,25], we found our results to be consistent with
experiments (Fig. 6). Although the restricted assumption in the
Taylor model raises the material strength to some extent, the supe-
rior computation efficiency makes this method highly preferable in
stochastic simulations. The variability of the macroscopic equiva-
lent stress at specific strain under the same deformation history
is of interest in this paper.

We assume here that the grain size distribution is independent
of texture. Therefore, the correlation of grain size and orientation is
not considered during sampling. We simply first sample the grain
sizes according to the given statistical constraints, such as mean
size and higher moments, and then sample the grain orientations
in the Rodrigues space. A microstructure is constructed by combin-
ing these two feature realizations. However, the effects of grain
size and texture on mechanical properties of a microstructure are
coupled. The reason is that a macroscopic property is calculated
as the volume average of microscopic properties,

hCi ¼ 1
V

Xn

i

CiVðriÞ ð25Þ

in which Ci = C(ri) is the property of grain i having orientation ri

and V(ri) is its volume. n is the number of total grains, V is the vol-
ume of the microstructure. Therefore, if a microstructure contains



Fig. 7. Plot of the length functional of the MST with respect to various sample sizes.
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grains of different sizes corresponding to the same orientation, the
average property varies. For example, consider two microstructures
having the same texture vector Eq. (5). If the two microstructures
have different grain size distribution, the volume of grains associ-
ated with the same orientation will be different. As a result, the
overall mechanical properties of these two microstructures will be
different. This coupled effect is taken automatically into consider-
ation in the present analysis.

7. Numerical examples

In this section, several examples are presented to study the
statistics of mechanical response of polycrystalline microstruc-
tures based on the model reduction techniques and sparse grid
collocation method introduced above. The deterministic solver
adopts the polycrystal plasticity constitutive model introduced
earlier. The macroscopic equivalent stress is averaged over the
microstructure domain following the Taylor hypothesis. In the
following numerical examples, the mechanical response of FCC
nickel microstructures subjected to homogeneous compression
is examined given various grain size and texture information.

The methodologies that are used in solving this stochastic
problem are introduced in the previous sections. Here, we
summarize the main procedure of addressing the examples of
interest.

(1) Generate a number of grain size samples fxig 2M; i ¼
1; . . . ; N according to certain information (prescribed mean
size, second- and third-order moments, etc.). The given
input microstructures satisfy the same constraints.

(2) Utilize NLDR to reduce the dimensionality of the grain size
samples. Their low-dimensional representations are fyig 2
A; i ¼ 1; . . . ; N. The optimal dimensionality of the lower
space A is linked to the rate of convergence of the length
functional of the minimal spanning tree of the geodesic
distance matrix of the unordered data points in the
high-dimensional space [6]. A convex hull is constructed as
the envelope of the reduced points.

(3) Assign a given texture to the given set of microstructures.
Put them through a sequence of deformation processes that
are controlled by several random processing variables x.
The resultant textures are utilized to construct initial
random texture space T for the stochastic polycrystal
plasticity problem.

(4) Perform KLE on texture samples, {si(x)}, i = 1, . . . ,N. The
low-dimensional representations {g(i)} 2 C can be obtained
by truncating the eigen-spectrum to a desired level.

(5) Combine the reduced grain size and texture to form the low-
dimensional surrogate of feature space of microstructures,
which is the stochastic input to the sparse grid collocation
SPDE solver.

(6) Use the ASGC method to construct the stochastic solution.
This method solves the deterministic problem at various
collocation points n on the stochastic space and constructs
an interpolation based approximation to the stochastic
solution. For a given set of stochastic collocation points,
the corresponding microstructures of these points can be
reconstructed (by the mapping F�1 : L!H) and used
as inputs in the solution of the corresponding crystal plas-
ticity boundary value problem (compression test). For each
of these deterministic problems, the elasto-plastic mechan-
ical response is computed by the Taylor homogenization.
The ASGC method constructs the stochastic interpolant of
the mechanical response using the deterministic responses
for the appropriately selected sparse grid collocation
points.
(7) After the corresponding stochastic plasticity problem has
been solved, the final equivalent stress for any other
microstructure realization in the stochastic support space
can be calculated using the hierarchical interpolating func-
tions. The probability distribution of the final equivalent
stress at strain 0.2 is constructed using kernel smoothing
density estimation on the histogram of realizations.

7.1. Example 1

In the first example, 1000 microstructure samples are first gen-
erated. Each sample contains 54 grains whose volume is uniformly
distributed in the interval between 0.0037 mm3 and 0.0333 mm3.
The mean grain volume of each microstructure is controlled to
be 0.0185 mm3, while higher-order moments are free to vary.
These samples are used as the input database of grain size feature.
By applying the NLDR method (Section 2), we first construct the
geodesic distance matrix between points and then map them to
a low-dimensional space through Multi-Dimensional Scaling
(MDS) and Isomap. The number of nearest neighbors is set to be
10. The intrinsic dimensionality d1 of the low-dimensional space
is estimated by linking to the convergence of the length functional
of the minimal spanning tree (MST) of the neighborhood graph de-
fined by geodesic distance matrix [6]. To be specific, for various
sizes of samples (varying from 20 to 1000), points were randomly
picked from the set of samples. The minimal spanning tree of these
sample sets was computed. The length functional of the MST was
computed for each of these sample sets. The optimal dimensional-
ity of the low-dimensional set is related to the slope of the line rep-
resenting the relationship between the length functional and the
sample number (in logarithm form). The slope is computed using
a least squares fit and found to be a = 0.6973. The reduced dimen-
sionality is estimated using d1 = 1/(1�a) (Section 2), which is
rounded to d1 = 3 (Fig. 7). In this way, the original 54 dimensional
grain size representation is reduced to 3.

The prescribed texture samples are obtained through a series of
random processing on an initially arbitrarily generated sample. To
be specific, an arbitrary texture consisted of 54 random orienta-
tions was first generated and assigned to 1000 microstructure
samples. Then, these microstructures were input into a sequence
of deformation modes controlled by two independent random vari-
ables x1 and x2.
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L ¼ x1

0 0 0
0 1 0
0 0 �1

264
375þx2

0 �1 0
1 0 0
0 0 0

264
375 ð26Þ

where random variables x1 and x2 determine the deformation
rate L of different modes and vary from �0.002 s�1 to 0.002 s�1.
At each time step, the deformation of the microstructure is con-
trolled by the combination of these two modes, but for different
samples, the combination is different in terms of the deformation
rates x1 and x2. At the end of 500 s, the 1000 resultant textures
were collected as the input texture database to the stochastic
problem. With these texture samples, the unbiased estimate of
the covariance matrix eC is constructed. We then apply KLE (Sec-
tion 4) on the covariance matrix and set the energy cutoff to be
90% – truncate the eigenvalue and eigenvector number d2 when
the energy captured by the first d2 eigenvalues is larger than
90%. Fig. 8 shows that the first two eigenvalues of the covariance
matrix captured 93.1% of the total energy (summation of all eigen-
values). Therefore, the dimensionality of the reduced initial tex-
ture is chosen to be 2.

A three-dimensional convex hull corresponding to low-
dimensional grain size representation is constructed with 88
faces and mapped to unit hypercube [0,1]3 [6], and the low-
dimensional texture representation is also mapped to a two-
dimensional hypercube [0,1]2. Assuming grain size and texture
features are independent, the complete low-dimensional surro-
gate of microstructure is five-dimensional. Therefore, a five-
dimensional hypercube can be constructed whose first three
dimensions correspond to grain size and the last two dimensions
correspond to texture. The adaptive sparse grid collocation
(ASGC) method is used with a sparse grid defined on this hyper-
cube [0,1]5 to investigate the mechanical response uncertainty
due to the variation of grain size and texture. The cutoff of error
indicator Eq. (17) controlling the interpolation error is set to be
0.001. Each realization within the hypercube can be transformed
to the low-dimensional space and therefore mapped to a micro-
structure feature set (Sections 3.2 and 4). The mechanical re-
sponse of the new microstructure was then computed using
the Taylor model deterministic solver (Section 6). In this exam-
ple, homogeneous compression is applied to the microstructure.
The velocity gradient is
Fig. 8. The ‘energy’ captured by the most significant eigenvalues.
L ¼ 0:002 s�1

0:5 0 0
0 0:5 0
0 0 �1

264
375 ð27Þ

The final equivalent strain is e = 0.2. The homogenized macro-
scopic equivalent stresses corresponding to this strain is the pri-
mary variable that is interpolated in the stochastic space using a
level 8 of interpolation. Thousand one hundred and ninty-two col-
location points are adaptively generated. The mean final equivalent
stress is found to be 539.159 MPa and the standard deviation is
10.471 MPa. As mentioned, the ASGC method decomposes the
multi-dimensional stochastic problem into solving a number of
deterministic problems. Thus, the deterministic solver is called at
each collocation point. The deterministic solver (here, the Taylor
model crystal plasticity solver) estimates the relation between
the equivalent stress and equivalent strain and records the history
of deformation process in a stress–strain curve. The variation in the
stress–strain response is shown in Fig. 9a, where the bars represent
the standard deviation of the equivalent stress for the correspond-
ing equivalent strain. Constructing the interpolant of the final
equivalent stress (at strain equal to 0.2), we can obtain the distri-
bution of the final stress by sampling uniformly from the hyper-
cube. According to Eq. (15), given a point located in the
hypercube, we can find a stress corresponding to it. Generate suf-
ficient samples (in this case, 10,000 points are generated from the
interpolant), a histogram of the final stress is obtained. Utilizing
kernel smoothing density estimation [11], the PDF of the final
equivalent stress is plotted in Fig. 9b.

7.2. Example 2

In the second example, the initial texture samples are generated
through a three-random variable process, in which a homogeneous
compression component is added to the previous two modes (Eq.
(28)). After KLE, the lower-dimensional representation is cut off
at d2 = 4, where 91.8% energy is captured. The grain size samples
are the same with Example 1, so that the final low-dimensional
space is 7. We aim at investigating the initial texture uncertainty
dependence of the mechanical response.

L ¼ x1

0:5 0 0
0 0:5 0
0 0 �1

264
375þx2

0 0 0
0 1 0
0 0 �1

264
375þx3

0 �1 0
1 0 0
0 0 0

264
375
ð28Þ

Following the similar procedure as in Section 7.1, 7146 nodes
are adaptively generated for a level 8 sparse grid collocation. The
mean stress was computed to be 540.148 MPa and the standard
deviation 13.304 MPa. It comes to our notice that although the
mean stress is almost the same as in the previous example, the
standard deviation is increased, which means the variance of the
equivalent stress is enlarged. The stress–strain curve variation
and final stress distribution are collected and constructed in
Fig. 10. From this figure, a wider distribution of the mechanical re-
sponse is observed, which implies that the randomness of the
mechanical response increased because of the additional random-
ness in texture.

7.3. Example 3

The first two examples demonstrated the mechanical response
variability due to texture uncertainty. This example considers the
grain size effect on mechanical properties. The mean grain volume
is preserved at 0.0185 mm3, whereas the second-order moment is
set to be 3.704 � 10�4 mm6. Compared with Example 1, where the
second-order moment is various and mostly around 4.10 �



Fig. 9. (a) Variation in stress–strain response due to uncertainty in grain size and initial texture. The random texture was generated from the deformation process defined in
Eq. (27). The bars represent the standard deviation of the effective stress for the corresponding effective strain. (b) PDF of the final equivalent stress of the microstructures
having the same mean size.

Fig. 10. (a) Variation in stress–strain response due to the effect of uncertainty in grain size and initial texture. The random texture was generated from the deformation
process defined in Eq. (28). The bars represent the standard deviation of effective stress for the corresponding effective strain. (b) PDF of the final equivalent stress of the
microstructures having the same mean size.
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10�4 mm6, the microstructures in this example have a narrow
grain size distribution. Performing NLDR, the best fit dimensional-
ity d1 of the low-dimensional space is still 3.

We select the initial texture the same as in the first example
that was generated from Eq. (26). Similar estimation process is
conducted and the mechanical response is analyzed up to level 8
with 936 adaptively generated collocation points. The mean final
equivalent stress and standard deviation are 537.918 MPa and
8.957 MPa, respectively. In the stress–strain response variation
(Fig. 11a) and final stress distribution (Fig. 11b), a sharper distribu-
tion is observed. The final stresses corresponding to narrow grain
size distribution are more concentrated around the mean value.

7.4. Example 4

In this section, we constrain the grain size distribution of micro-
structure samples through three moments. Keeping the first two
moments identical with those in Example 3, the third-order
moment constraint is added with the value 8.637 � 10�6 mm9.
This value is larger than the average third-order moment
(7.86 � 10�6 mm9) when only the first two moments are
constrained. This variance results that most grain sizes in a micro-
structure are close but smaller than the mean size, while a few
grain sizes are much larger than the others. If the third-order mo-
ment is set to a higher value, the variation of the grain size will be
quite small or even cannot be captured among the microstructure
samples. The resulting microstructures tend to have the same grain
size distribution. A comparison of sorted grain size vectors among
three microstructure samples whose grain size distributions are
constrained by different number of moments are demonstrated
in Fig. 12. We can observe that the microstructure constrained by
only the mean size tends to have almost evenly distributed grain
sizes. Grain sizes of the one constrained by two moments are more
concentrated around the mean size. In the case that three mo-
ments are constrained, most grain sizes are a little smaller than
the mean size, while a couple of grains have unusual large values.

As more constraints are applied to the grain size distribution,
the underlying correlation is increased. Performing NLDR on this
set of sorted grain size vectors, we obtain the optimal dimension-
ality of the grain size feature to be 2. Combining the reduced grain
size vectors with texture (the same as Example 1), the low-dimen-
sional space has only four dimensions. The governing stochastic
equations for compression are solved through ASGC up to level 8
with 798 collocation points. The mean final equivalent stress is
found to be 539.543 MPa and the standard deviation is
8.974 MPa. The stress–strain curve variance and final stress



Fig. 11. (a) Variation in stress–strain response due to the effect of uncertainty in grain size and initial texture. The input microstructures have fixed mean grain size and
second-order grain size moment, whereas their texture is defined from the process in Eq. (26). The bars represent the standard deviation of effective stress for the
corresponding effective strain. (b) PDF of the final equivalent stress of the microstructures.

Fig. 12. Three microstructure samples whose grain size distributions are con-
strained by different number of moments. The first case is constrained by mean
volume 0.0185 mm3; the second is constrained by the same mean volume and the
second-order moment 3.704 � 10�4 mm6; the last case is constrained by a third-
order moment 8.637 � 10�6 mm9 in addition to the first two moments.

Fig. 13. Case of microstructures having the same mean size, second-order and third-order moments. Variation in stress–strain response due to the effect of uncertainty in
grain size and initial texture. The bars represent the standard deviation of effective stress for the corresponding effective strain. (b) PDF of the final equivalent stress.

Fig. 14. Final stress distribution of microstructures whose grain size distributions
are constrained by different number of moments: mean grain volume 0.0185 mm3

(dashed); mean grain volume 0.0185 mm3 and second-order moment 3.704 �
10�4 mm6 (dash-dot); mean grain volume 0.0185 mm3, second-order moment
3.704 � 10�4 mm6, and third-order moment 8.637 � 10�6 mm9 (solid).
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Fig. 15. (a) Variation in stress–strain response due to the effect of uncertainty in grain size and initial texture. The mean grain size is 1.85 � 10�5 mm3. The bars represent the
standard deviation of the effective stress for the corresponding effective strain. (b) Final stress distribution of microstructures having different mean grain size.
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distribution are plotted in Fig. 13. Although the variance is almost
the same as in Example 3, the distribution of the final stress is
more concentrated. A comparison between the final stress distri-
bution of these three cases are shown in Fig. 14.
7.5. Example 5

In the last example, the volume of the microstructure is reduced
to 0.001 mm3 (compared to previously 1 mm3 domain). In this
way, the mean effective diameter of grains is decreased to 1/10
of the first example. The volume of individual grains now distrib-
uted within 3.7 � 10�6 mm3 to 3.33 � 10�5 mm3 interval. Only
the mean grain size is constrained. This example meant to study
the microstructure mean grain size effect on the mechanical re-
sponse distribution. The smaller the grain size, the higher the
equivalent stress should be induced at the same strain.

Fig. 15a shows the stress–strain curve variation. The mean value
of the final stress is 580.996 MPa (raised by about 40 MPa) and the
standard deviation is 10.634 MPa (close to the standard deviation
10.471 MPa in Example 1). Fig. 15b compares the final stress distri-
butions of different mean grain size. Both cases have similar shape
while the one with smaller grain size has higher mean value.
8. Conclusions

In this paper, the effect of multiple sources of uncertainty on
macroscopic mechanical response is studied. A microstructure
was considered as a combination of random fields consisted of
grain size and texture. Given a set of microstructure samples as
the realization of this random field, dimensionality reduction tech-
niques were applied to find their underlining correlations. A non-
linear model reduction based on Isomap was performed on grain
size variables and Karhunen–Loève Expansion was adopted to re-
duce the texture dimensionality. The dimensionality of the random
field was successfully reduced from 216 to less than 7. Adaptive
sparse grid collocation was then introduced to sample new micro-
structures from the low-dimensional space. The elasto-plastic
mechanical response of the microstructures satisfying given infor-
mation was computed and its distribution is constructed. The ef-
fect of texture and grain size randomness is studied. It shows
that the model reduction techniques greatly simplified the repre-
sentation of random microstructure features, while the significant
characters can be preserved. The propagation of uncertainty in
microstructure evolution enables one to provide the prediction
on macroscopic mechanical response. The distribution of final
stress and stress–strain curve provide important guidance in mate-
rial design and process, when certain grain size and texture infor-
mation is known.

The sparse grid approach constructed an interpolant of the
mechanical response in the stochastic space of grain size distribu-
tion and texture. This interpolant allows the user to compute with
controllable interpolation error the response of any other micro-
structure in the class of the given microstructures. This cannot be
possible with alternative approaches as for example when using
the Maximum Entropy (MaxEnt) approach with the given data. In
addition, modeling the texture uncertainty using MaxEnt is com-
putationally an intractable task.

In this work, the mechanical response was analyzed using the
Taylor hypothesis which provides fast but less accurate results.
In the Taylor model, the deformation of the microstructure is con-
strained to be identical in all grains and this leads to an over-esti-
mation on the mechanical response. A finite element based
approach assuming homogeneous deformation on the boundary
is a more interesting approach to consider in the future as it cap-
tures higher-order texture effects (location and arrangement of
grains).
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