
Computational Materials Science 48 (2010) 213–227
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
Microstructure model reduction and uncertainty quantification in multiscale
deformation processes

Babak Kouchmeshky, Nicholas Zabaras *

Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace Engineering, 101 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY 14853-3801, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 September 2009
Received in revised form 3 December 2009
Accepted 3 January 2010
Available online 29 January 2010

Keywords:
Multiscale modeling
Polycrystal plasticity
Processing
Texture
Mechanical properties
Probability and statistics
Uncertainty quantification
0927-0256/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.commatsci.2010.01.001

* Corresponding author. Fax: +1 607 255 1222.
E-mail address: zabaras@cornell.edu (N. Zabaras).
URL: http://mpdc.mae.cornell.edu/ (N. Zabaras).
The quantification and propagation of uncertainty in multiscale deformation processes is considered. A
reduced-order model for representing the data-driven stochastic microstructure input is presented.
The multiscale random field representing the random microstructure is decomposed into few modes
in different scales (the Rodrigues space for representing texture on mesoscale and the continuum mac-
roscale space). Realizations from a stochastic simulation are used to obtain a small number of modes
approximating the stochastic field. An example of a multiscale closed-die forging problem is provided
in which the effects of uncertain initial geometry and texture on the macroscale properties are studied.
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1. Introduction

Macroscale properties of polycrystalline alloys depend on the
preferred orientation of crystals in the underlying microstructure
manifested as the crystallographic texture. During deformation
processes, mechanisms such as crystallographic slip and lattice
rotation drive the formation of texture. Variability in such pro-
cesses and uncertainty in the initial texture of the material sub-
jected to these processes have a significant effect on the final
macroscale properties. Obtaining the variation in material proper-
ties due to the inherent randomness of the microstructure is an
important component in any materials design. This leads one to
use stochastic methods in calculating the effect of uncertainties
in initial texture and geometry on the final macroscale properties
of the workpiece.

The multiscale phenomena of crystal re-orientation in a
deformation process using finite element discretization have
been the topic of previous works [1–3]. In [1], a multiscale
sensitivity framework for the control of macroscale properties in
deformation processing has been studied. Acharjee and Zabaras
[4] have studied the effect of uncertain initial geometry for a
deformation processing problem using a phenomenological consti-
tutive model.
ll rights reserved.
On the propagation of uncertainty area, there has been signifi-
cant progress in posing and solving stochastic partial differential
equations [5–7]. Model reduction approaches for stochastic sys-
tems have also emerged in recent works [8–11]. The effects of
uncertain initial texture and processing parameters on the convex
hull of macroscale properties were studied recently in [12] using a
point simulator. The effect of uncertain material properties in a
multiscale diffusion problem is presented in [13]. The reduced-or-
der model considered was only implemented on the mesoscale.
The method presented in [13] is viable for cases where the correla-
tion length of material properties is much smaller than the shortest
distance between the integration points on the macroscale. For the
problems where there is a much larger correlation length for mate-
rial properties, this method will result in a number of independent
random variables at each integration point on the macroscale. This
high-stochastic dimensionality in turn leaves no choice in [13] but
to use Monte-Carlo techniques to analyze the multiscale diffusion
problem that they examined.

Including the underlying microstructure and its evolution for
every integration point on the macroscale is essential in quantify-
ing the effect of a deformation process on the macroscale proper-
ties. This paper provides the first steps towards developing a
rigorous methodology for addressing this problem using a bi-
orthogonal model [9] to describe the variability of the initial micro-
structure. The random field describing the system input (the initial
microstructure) is decomposed into modes in two different scales,
the Rodrigues space and the continuum spatial domain. The
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coefficients of the polynomial chaos terms in this expansion are
obtained using projections of the random modes on the chaos
polynomials. For propagating the uncertainty, a sparse grid collo-
cation strategy [7] is considered that utilizes the deterministic
multiscale deformation simulator.

As the number of random variables increases, the computa-
tional effort needed to solve a stochastic multiscale deformation
problem rapidly becomes a burden. The aim of this paper is to
present a general data-driven framework for model reduction of
the input microstructure uncertainty that arises. This framework
is meant to eliminate the need for redundant correlated random
variables that would be needed in case of using methods as in
[13]. Hence it can be used to quantify the effects of uncertainty
in the multiscale problem under study.

The plan of this paper is as follows. Section 2 provides some
background on the constitutive polycrystal plasticity model, tex-
ture evolution and kinematics in the multiscale deformation prob-
lem. Section 3 provides the problem definition. Section 4 briefly
reviews the sparse grid collocation method used in solving the sto-
chastic differential equations. The reduced-order model is pre-
sented in Section 5 and summary of the polynomial chaos
expansion used in the reduced-order model is presented in Section
6. Finally, Sections 7 and 8 present the numerical examples and
conclusions, respectively.

2. Constitutive problem and texture evolution

During a deformation process, crystallographic slip and re-ori-
entation of crystals (lattice rotation) can be assumed to be the pri-
mary mechanisms of plastic deformation. The slip and re-
orientation occur in an ordered manner such that a preferential
orientation or texture develops. We follow the rate-independent
constitutive model developed in [14].

Consider a particular crystal orientation, in an appropriate kine-
matic framework the total deformation gradient is decomposed
into plastic and elastic parts F ¼ FeFp, where Fe is the elastic defor-
mation gradient and Fp, the plastic deformation gradient, with det
Fp ¼ 1. The constitutive relation is given by

T ¼Le½Ee� ð1Þ

where T is the second Piola–Kirchhoff stress tensor, Le is the
fourth-order anisotropic elasticity tensor expressed in terms of
the crystal stiffness parameters and the orientation r and
Ee ¼ 1

2 ðF
eT Fe � IÞ. The re-orientation velocity is found as follows:

v ¼ @r
@t
¼ 1

2
ð-þ ð- � rÞr þ -� rÞ ð2Þ
Fig. 1. (Left) Schematic view of the workpiece and die in a forgin
where r is the orientation (Rodrigues’ parameterization) and - rep-
resents the spin vector defined as - ¼ vectð _ReReTÞ, where Re is eval-
uated through the polar decomposition of the elastic deformation
gradient Fe as Fe ¼ ReUe.

Consider a macroscopic material point and an associated under-
lying microstructure M discretized by a grid (Fig. 1). Each point on
this underlying grid corresponds to a different crystal orientation
R. At each point on the grid, the crystal lattice frame êi is related
to the sample reference frame ei by ei ¼ Rêi.

The Rodrigues–Frank axis-angle parameterization is used as a
convenient scheme to represent R [15]. The parameterization is de-
rived from the natural invariants of R: the axis of rotation n and the
angle of rotation f̂. The angle-axis parameterization, r, is obtained
by scaling the axis n by a function of the angle f̂ as r ¼ nf ðf̂Þ. In the
particular case of Rodrigues’ parameterization, the function is de-
fined as f ðf̂Þ ¼ tan f̂

2

� �
. Due to crystal symmetry, the Rodriguez

parameterization of orientation is not unique. Restricting the
Rodriguez domain to a fundamental zone that reflects the crystal
symmetry leads to a one-to-one correspondence between the
points on the Rodriguez space and the crystal orientation.

To represent a particular texture, an orientation distribution
function AðrÞ is defined on a three-dimensional bounded domain
R called Rodrigues space that describes the crystal density over
the fundamental region [16–18]. Through such a description, the
microstructure is treated as a continuum of crystals. The represen-
tation of the orientation distribution function (ODF) in an Eulerian
framework is Aðr; tÞ, whereas in a Lagrangian framework is given asbAðs; tÞ, where Aðr; tÞ ¼ Aðr̂ðs; tÞ; tÞ ¼ bAðs; tÞ, with r̂ the re-orienta-
tion vector.

For cubic symmetry, the fundamental zone is shown in Fig. 2a.
It can be shown [19] that each symmetry rotation f̂ along axis n
translates to a pair of planes in Rodrigues space with normals ±n
at a distance equal to tan f̂

4

� �
from the origin. The inner envelope

of the planes created due to symmetry is the fundamental zone.
For example in the cubic symmetry case, the faces of the funda-
mental zone are due to symmetry rotations about h100i family
of axes and their distance to the origin is tanðp=8Þ. The corners
of the fundamental zone are due to the planes created by the sym-
metry rotations along h111i axes and their distance to the origin is
tanðp=6Þ [19].

Orientations on each parallel pair of planes that form the faces
and corners of the fundamental zone are equivalent under the
symmetries. In the cubic fundamental region, orientations on
the parallel pairs of {100} faces are equivalent by an offset. This
offset is determined by rotation of p=4 about the corresponding
h100i axes. The same equivalence holds for {111} faces where
the offset is a rotation of p=3 about the corresponding h111i axes
[19].
g process. (Right) schematic view of the multiscale problem.
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Fig. 2. (a) Texture obtained for an FCC copper polycrystal subjected to a simple compression mode is shown over the fundamental part of Rodrigues space. (b) Comparison of
the equivalent stress–strain response with results from [14].
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The Lagrangian scheme for the ODF evolution as described in
[16] is used. The evolution of the ODF is governed by the ODF con-
servation equation and is given in the Lagrangian form as follows:

@bAðs; tÞ
@t

þ bAðs; tÞ 5 �vðs; tÞ ¼ 0 ð3Þ

where vðs; tÞ is the Lagrangian re-orientation velocity of the crystals
and the Lagrangian form of the ODF, bAðsÞ, is subjected tobAðs; 0Þ ¼ bA0ðsÞ as the initial condition.

Texture evolution is modeled using the above equation. The
texture is represented by the ODF on a grid representing the dis-
cretized fundamental region of the Rodrigues’ parameter space.
For the evolution of texture, the conservation equation for the
ODF is solved using the finite element method. The constitutive
model is solved at each integration point of this grid which repre-
sents an orientation and is connected to the macroscale through
the Taylor hypothesis. The response of the underlying microstruc-
ture is calculated using the polycrystal plasticity model.

Fig. 2 shows an example of the evolved texture for a Copper
polycrystal subjected to a simple compression mode. The texture
is provided in the form of orientation distribution function and is
plotted over the fundamental part of Rodrigues space for FCC crys-
tal structures. The corresponding stress–strain response is also
provided in this figure.

The polycrystal average of an orientation dependent property,
Xðs; tÞ, is determined as:

hXi ¼
R
R

XðsÞbAðsÞdvR
R
bAðsÞdv

ð4Þ

Here, dv ¼ ðdet gÞ0:5ds1ds2ds3. Since the orientation space is non-
Euclidean, the volume element is scaled by the term ðdet gÞ0:5,
where g is the metric for the space.

2.1. Kinematics

Consider a deformation process such as a closed-die forging
problem. This deterministic multiscale problem consists of the fol-
lowing: the time history of the deformation including the elastic
and plastic part, material state and texture are calculated incre-
mentally as the result of external forces and the effect of contact
between the workpiece and the die. For this purpose, the deforma-
tion problem is divided into kinematic, contact, constitutive and
texture evolution subproblems. An updated Lagrangian framework
in which the configuration at the previous step Bn is considered as
the reference configuration for calculating the material configura-
tion Bnþ1 is used to solve the deformation problem.

Let X be a material particle in B0 and let x ¼ ~xðX; tnþ1Þ be its
location at time tnþ1. The total deformation gradient can be defined
as
FðX; tnþ1Þ ¼ r0~xðX; tnþ1Þ ¼
@~xðX; tnþ1Þ

@X
ð5Þ

Using an updated Lagrangian framework, the total deformation
gradient F at time t ¼ tnþ1 can be expressed in terms of Fn at time
t ¼ tn as follows:

F ¼ FrFn ð6Þ

where Fr is the relative deformation gradient. The equilibrium
equation at t ¼ tnþ1 can be expressed in the reference configuration
Bn as,

rn � hPri þ f r ¼ 0 ð7Þ

where rn denotes the divergence in Bn. f r can be represented as

f r ¼ det Frb ð8Þ

where b is the body force defined on the current configuration Bnþ1.
The homogenized Piola–Kirchhoff I stress hPri is expressed per unit
area of Bn and given as follows:

hPri ¼ hdet FrTF�T
r i

¼ det FrhTiF�T
r

ð9Þ

where T is the Cauchy stress. The Taylor hypothesis for the macro-
meso linking is assumed. An incremental quasi-static problem
should be solved to determine the displacement field that satisfies
Eq. (7). The solution of the deformation problem proceeds incre-
mentally in time starting from the initial configuration B0.

Eq. (7) describes the equilibrium of the body at time tnþ1 ex-
pressed in the updated reference configuration Bn. The incremental
quasi-static boundary value problem at time t ¼ tnþ1 is to find the
incremental (with respect to the configuration Bn) displacement
field uðxn; tnþ1Þ ¼ unþ1 that will satisfy Eq. (7). The weak form of
this equation can be presented as eGðunþ1; ~gÞ ¼ 0, where ~g is a test
vector field compatible with the kinematic boundary conditions.
To solve this non-linear equation for uðxn; tnþ1Þ, a Newton–Raphson
iterative scheme along with a line search method is used. Let ukþ1

nþ1

and uk
nþ1 be the displacement fields at the end of the ðkþ 1Þth step

and the kth step, respectively, during the Newton–Raphson
iterative process. Then, the linearized form of the equation is as
follows:

eG uk
nþ1; ~g

� �
þ @eG
@uk

nþ1

ukþ1
nþ1 � uk

nþ1

� �
¼ 0 ð10Þ

The linearization of the part of eG which corresponds to the
internal work is provided as

deGinternal ¼
Z

Bn

dhPri �
@~g

@xn
dV ð11Þ
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Fig. 3. Convergence of the bulk modulus (MPa) with respect to the mesh refinement in the macroscale.
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where the test displacement ~g is expressed over the initial configu-
ration Bn.

The linearization process of the homogenized PK-I stress is
given as:

dhPri ¼ det Fr trðdFrF
�1
r ÞhTi � hTiðdFrF

�1
r Þ

T þ hdTi
� �

F�T
r ð12Þ

where dT ¼ d 1
det Fr

FrTðFrÞT
� �

requires the evaluation of dFr and dT

using the constitutive model [1].
The contact problem is solved using an augmented Lagrangian

framework. It is assumed that the contact problem is independent
of the nature of the underlying microstructure, and that texture
plays a role only through the stress response.

Note that as mentioned before each point on the macroscale
corresponds to an underlying microstructure represented by an-
other grid in Rodrigues space. Hence the material state (including
texture) is updated in the sub-grid related to the microscale at each
point on the macroscale. Figs. 3–5 show the convergence study of
bulk, Young’s and shear moduli as macroscale properties with re-
spect to the mesh refinement on the macroscale. The material used
is FCC copper as in Fig. 2 with the following elastic properties
c11 ¼ 170:0 GPa; c12 ¼ 124:0 GPa; c44 ¼ 75:0 GPa. For all cases, the
underlying texture has been modeled by discretizing the Rodrigues
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space using 448 elements. The relative error for these macroscale
properties can be written as

�El :¼ Xl � X0

X0

���� ����
L2ðDÞ

ð13Þ

where D is the spatial domain, �El is the relative error of level
l ðl ¼ 1 : 3Þ mesh refinement with respect to level 4 mesh refine-
ment (bottom right picture in Figs. 3–5, Xl is the value of the mac-
roscale property for level l refinement and X0 is the corresponding
value at level 4. Fig. 6 shows this relative error with respect to
the level of mesh refinement. Next, selecting level 2 mesh refine-
ment in the macroscale, the convergence of the texture evolution
for four points on the macroscale is shown in Fig. 7. Please note that
the multiscale framework presented here will be used in the second
example in Section 7.

3. Stochastic multiscale problem definition

The main focus of this paper is to provide a framework for
quantifying the effect of random initial geometry and texture on
the macroscale properties of the product in a multiscale deforma-
tion process. For this purpose, polycrystalline materials are
considered.

Consider a complete probability space ðX; F; PÞ, where X is the
event space, F the r-algebra, and P : F ! ½0;1� is the probability
measure. The uncertainty in the problem we consider comes from:

(a) The variation in the surface of the initial workpiece repre-
sented by a degree 6 Bézier curve Rbða;xÞ; x 2 X as
Rbða;xÞ ¼ 0:01� 5þ
X6

i¼1

biðxÞuiðaÞ
 !

ð14Þ
Fig. 7. Convergence of the texture evolution with respect to
where a ¼ z
H represents the z-coordinate normalized with respect to

the hight of the workpiece, bi are the Bézier coefficients and ui are
the basis functions defined as

u1ðaÞ ¼ ð1:0� aÞ6 þ 6að1� aÞ5

u2ðaÞ ¼ 15:0ð1:0� aÞ4a2

u3ðaÞ ¼ 20:0ð1:0� aÞ3a3

u4ðaÞ ¼ 15:0ð1:0� aÞ2a4

u5ðaÞ ¼ 6:0ð1:0� aÞa5

u6ðaÞ ¼ a6 ð15Þ
(b) Variation in the initial texture bA0ðx; s;xÞ; x 2 D;
s 2 R; x 2 X, s where D is the spatial domain and R is the
fundamental zone of the Rodrigues space. The random fieldbA0ðx; s;xÞ represent the variability of the initial texture.

The kinematic problem in the macroscale can be represented in
the stochastic framework as

eGðuk
nþ1; ~g;xÞ ¼ 0 ð16Þ

and the evolution of the underlying texture can be written as

@bAðx; s; t;xÞ
@t

þ bAðx; s; t;xÞ 5 �vðs; t;xÞ ¼ 0 ð17Þ

As mentioned before, finite element discretization is used for
modeling the deformation process on the macroscale. Each inte-
gration point on the macroscale corresponds to an underlying tex-
ture represented in the fundamental part of Rodrigues space by a
finite element discretization. So, the texture is a field at each point
in the macroscale. Using a data-driven approach, the Karhunen–
Loève expansion defined in subsequent sections (Eq. (22)) can be
used to reduce the random field bA0ðx; s;xÞ representing the initial
texture to few modes in the spatial domain and Rodrigues space.
Using the finite dimensional noise assumption, the random fieldbA0ðx; s;xÞ can be represented by a finite number of random vari-
ables bA0ðx; s;�f1;�f2; . . . ;�fnd

Þ. In this data-driven approach, we as-
sume that realizations of the random field bA0ðx; s;xÞ are known
(from experiments or simulation) from which a reduced-order
model converging in the second-order moment sense [9] to the
full-order texture can be constructed. It should be noticed that
the aforementioned reduced-order model is used to reconstruct
the random field representing the initial texture. The reconstructed
initial texture is then used to solve for the multiscale problem and
the associated subproblem of texture evolution. We assume no fur-
ther model reduction in the latter stage. The reduced-order model
depends on nd random variables �f1;�f2; . . . ;�fnd

. Rosenblatt transfor-
mation [20] can be used to transform these set of nd random vari-
ables �f1;�f2; . . . ;�fnd

to another set of nd independent identically
distributed uniform random variables n1; n2; . . . ; nnd

in a unit hyper-
cube ½0;1�nd . This allows us to sample in this space and seamlessly
the number of finite elements used in the mesoscale.
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use existent collocation algorithms [7] to obtain the probabilistic
distribution of the final texture which in turn is used to obtain
the distribution of macroscale properties.

3.1. Transforming the random variables

As discussed previously, a collocation method is used for solv-
ing the stochastic partial differential equation representing the
multiscale deformation problem (see also Section 4). In this meth-
od, a unit hypercube ½0;1�nd represents the stochastic space where
nd is the dimension of the stochastic domain. This space is sampled
using an adaptive sparse grid to compute the stochastic interpolant
of the ODF. Each point in this sparse grid corresponds to a specific
realization of the random variables used in constructing the re-
duced-order representation (described in the following sections)
of the initial texture. A transformation is needed to obtain the ac-
tual random variables from the coordinates of the sparse grid
points from the hypercube. This subsection provides one such
transformation.

Since the joint probability density of �f is absolutely continuous
on the domain of definition, the Rosenblatt [20] transformation can
be used to relate the nd variate distribution function P�f to that of
n1; . . . ; nnd

which are independent identically distributed (iid) uni-
form random variables on the hypercube ½0;1�nd .

�f1 ¼ P�1
1 ðPn1 ðn1ÞÞ;

�f2 ¼ P�1
2j1ðPn2 ðn2ÞÞ;

..

.

�fnd
¼ P�1

nd j1:ðnd�1ÞðPnnd
ðnnd
ÞÞ ð18Þ

where Pij1:ði�1Þ; i ¼ 1; . . . ; nd; is the distribution function of �fi condi-
tioned on �f1 ¼ �f1; �f2 ¼ �f2; . . . ; �fi�1 ¼ �fi�1 obtained from P�f. This
would help in seamlessly incorporating the collocation strategy de-
scribed in the next section to solve the stochastic partial differential
equation under study.

4. Sparse grid interpolation: uncertainty propagation

For obtaining the macroscale properties one needs the underly-
ing texture. This section provides a summary of the algorithm used
in obtaining the effect of uncertainty on texture evolution. An
adaptive sparse grid collocation strategy for constructing the sto-
chastic solution for the evolution of the ODF is used. For details,
the interested reader is referred to [7].

The basic idea of the stochastic collocation method is to approx-
imate the stochastic space using multi-dimensional interpolating
functions. The method uses realizations of the function (i.e. the
solution cAf ðx; s; niÞ of the SPDE Eq. (17), at a finite set of collocation
points fnig

nn
i¼1, where the evolved texture is shown by cAf and nn is

the number of collocation points). These finite number of deter-
ministic solutions are used in constructing an interpolant of the
ODF using hierarchical linear interpolating basis functions [7].
The sparse grid is based on the Newton–Cotes formulae using equi-
distant support nodes [7]. The sampling points on the hypercube
(C ¼ ½0;1�nd , where nd is the number of stochastic dimensions)
are defined using tensor products and following the Smolyak con-
struction. The function cAf ðx; s; nÞ is approximated as follows:cAf ðx; s; niÞ ¼

X
jij6q

X
j

hi
jðx; sÞ � ai

jðnÞ ð19Þ

where for each point on the macroscale there is a sparse grid inter-
polant which represents the random texture at each discretized
point in Rodrigues space. This is just a simple weighted sum of
the value of the basis functions for all collocation points in the cur-
rent sparse grid where ai
j � ajðni

jÞ are the nd-dimensional multilinear
basis functions, hi

j are the so called hierarchical surpluses (differ-
ence between the value of interpolant in the current and previous
interpolation level), q� nd is the order of interpolation, nd is the
number of stochastic dimensions and the summation is over the
collocation points [7].

After obtaining the expression in Eq. (19), it is easy to extract
statistics [7]. For example, the mean of the random solution can
be evaluated as follows:

E½cAf ðx; s; nÞ� ¼
X
jij6q

X
j

hi
jðx; sÞ:

Z
C

ai
jðnÞdn ð20Þ

where the probability density function pðnÞ is 1 since the stochastic
space is a unit hypercube ½0;1�nd . As shown in [7], the multi-dimen-
sional integral is simply the product of the corresponding 1D inte-
grals which can be computed analytically. The second-order
moment can be calculated by also constructing a sparse grid inter-
polant for cAf

2ðx; s; nÞ. Higher-order statistics including the PDF can
be calculated by sampling from the interpolant.

5. A multiscale reduced-order model of the uncertain initial
microstructure

This section provides a framework to obtain a reduced-order
model for the underlying random microstructure field (here ODFs
defining texture). Assume an L2 random field �aðx; s;xÞ defined on
a probability space ðX; F; pÞ
�aðx; s;xÞ : D�R�X! R ð21Þ

where D is the spatial domain, R is the fundamental part of Rodri-
gues space, X is the set of elementary events and x 2 X is the vector
of random inputs. One can use the Karhunen–Loève expansion to
express this field by a bi-orthogonal representation in the form

�aðx; s;xÞ ¼ �aðx; sÞ þ âðx; s;xÞ

¼ �aðx; sÞ þ
X1
i¼1

ffiffiffiffiffi
qi
p

wiðsÞUiðx;xÞ ð22Þ

where �a is defined as �aðx; sÞ ¼ h�aðx; s;xÞi and h�i is the averaging
operation defined below, qi are eigenvalues of the eigenvalue prob-
lem defined later on, the wi are modes strongly orthogonal in Rodri-
gues space, Ui are spatial modes weakly orthogonal in space with
respect to an inner product defined as

ðf ; gÞ :¼
Z

D
hf ; gidx ð23Þ

hf ; gi ¼
Z

f ðxÞgðxÞpðxÞdx ð24Þ

where pðxÞ is the probability distribution. The strong orthogonality
of wi modes in Rodrigues space can be written as

ðwi;wjÞR ¼
Z
R

wiðsÞwjðsÞds ¼ dij ð25Þ

and the weak orthogonality of spatial modes can be written as

ðUi;UjÞ ¼ dij ð26Þ

By minimizing the distance (based on the norm defined in Eq.
(23)) between the Karhunen–Loève expansion and the random
field, one ends up with [9]

wiðsÞ ¼
1ffiffiffiffiffiqi
p ðâ;UiÞ ð27Þ

and from the orthogonality condition

Uiðx;xÞ ¼
1ffiffiffiffiffiqi
p

Z
R

âðx; s;xÞwiðsÞds ð28Þ
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Eqs. (27) and (28) lead to the following eigenvalue problem:

qiwiðsÞ ¼
Z
R

Cðs;�sÞwið�sÞd�s ð29Þ

where the covariance C is defined as

Cðs;�sÞ ¼ ðâðx; s;xÞ; âðx;�s;xÞÞ ð30Þ

In discrete form, the covariance can be written as

C ¼ 1
nr

Xnr

j¼1

Xnel

in¼1

Xnint

im¼1

âjðxim ÞâT
j ðxim Þĝim jJin j ð31Þ

where jJin j is the Jacobian determinant of the element in; ĝim is the
integration weight associated with the integration point im; nint is
the number of integration points in each element, nr is the number
of realizations, nel is the number of elements in macroscale and â is
a column vector with elements corresponding to integration points
in Rodrigues space and xim represents global coordinate of the inte-
gration point im in macroscale.

It should be noticed that the choice of inner product defined in
Eq. (23) is not unique. In [9], three different inner products were
explored out of which the one minimizing the second-order mo-
ment of the error (the distance between the Karhunen–Loève
expansion and the random field) is adopted in here. Also note that
in Eq. (25), ds ¼ ds1ds2ds3 but the integration in still in Rodrigues
space. One can equivalently use dv ¼ ðdet gÞ0:5ds1ds2ds3 in the inte-
gration in Eq. (25) with appropriate scaling of the covariance ma-
trix C and the eigenvectors wi.

The ODF representing the texture takes positive values. Hence,
the Karhunen–Loève expansion should provide us with positive
values. To obtain a positive random field, one can use the Karhun-
en–Loève expansion for the �aðx; s;xÞ ¼ logðbAðx; s;xÞ � AminÞ
assuming that bAðx; s;xÞ > Amin > 0 almost surely [21]. The processbA can be reconstructed as

Amin þ expð�aðx; s;xÞÞ ¼ Amin þ expð�aðx; sÞ þ
X

i

� ffiffiffiffiffi
qi
p

wiðsÞUiðx;xÞÞ ð32Þ

It should be noticed that as shown in Eq. (4), the significance of
the values for each component of the texture bA can be determined
relative to its other components. In cases that the texture is con-
structed such that it approximates the distribution of orientations
from a realistic picture of microstructure (schematically shown in
Fig. 1) some elements of bA can be zero due to absence of the spe-
cific orientation in the picture. In this case, a small number com-
pared to other components of bA should be provided instead of
zero to avoid obtaining an unbounded â. Although a more robust
method to tackle this problem is presented in [12], more mathe-
matical developments are still needed to apply it to the multiscale
case.

In practice, �aðx; s;xÞ :¼ �aðx; s; n1ðxÞ; . . . ; nnd
ðxÞ, where n1; . . . ; nnd

are a set of finite number of random variables and nd refers to the
number of random variables considered in the problem.

Next, the polynomial chaos decomposition of Uiðx;xÞ can be
written as

Uiðx;xÞ :¼ Uiðx; f1ðxÞ; . . . ; fnd
ðxÞÞ ¼

X
j

/ijðxÞgjðxÞ ð33Þ

where the giðxÞ ¼ giðfðxÞÞ are in a one-to-one correspondence
with the Hermite polynomials in Gaussian variables (see Section
6), fðxÞ is the vector consisting of nd independent Gaussian random
variables ðf1; . . . ; fnd

Þ and the coefficients /ijðxÞ can be obtained from

/ijðxÞ ¼
hUiðx; fÞgji

g2
j

D E ð34Þ
It should be noticed that in order to calculate the right hand side
of the above equation, Ui and g should be expressed in the same
probability space. But Ui obtained from Eq. (28) is expressed with
respect to n (Eq. (19)) i.e. each realization of Ui is with respect to a
set of nd independent uniformly distributed random variables (re-
call that Ui was constructed from realizations of texture by sam-
pling on the hyprecube). A simple transformation as Eq. (18) can
transform these random variables to a set of nd independent
Gaussian random variables ðf1; . . . ; fnd

Þ with mean zero and vari-
ance one.

6. Polynomial chaos expansion

A second-order process can be approximated by a series of
terms of Hermite polynomials in Gaussian variables. This approxi-
mation is mean-square convergent. If Uiðx;xÞ is a second-order
random process hUiðx;xÞ;Uiðx;xÞi <1, it can be written as an
expansion in terms of Hermite polynomials Hnðfi1 ; . . . ; find

Þ of order
n in the Gaussian variables ðfi1 ; . . . ; find

Þ with zero mean and unit
variance, where i indexes the modes in Eq. (22) and i1; i2; . . . index
the polynomial terms. This expansion is usually written as

Uiðx;xÞ ¼
X1
j¼0

YijðxÞgjðfÞ ð35Þ

where there is a one-to-one correspondence between Hnðfi1 ; . . . find
Þ

and gjðfi1 ; . . . find
Þ. In practice this series can be truncated with re-

spect to the order of Hermite polynomials and the dimension of
the random vector f. The Hermite polynomials are orthogonal with
respect to the Gaussian probability measure.

If the dimension of the random vector f is nd and the order of
Hermite polynomials is p the total number of terms in polynomial
chaos expansion is P þ 1.

P þ 1 ¼ ðpþ ndÞ!
p!nd!

ð36Þ

The dimension of the random vector f in polynomial chaos is
dictated by the number of random variables driving the stochastic
problem and the order of Hermite polynomials is decided from a
convergence study on the probability distribution of the random
process Uiðx;xÞ.

6.1. Computational aspects of polynomial chaos expansion

In order to obtain the coefficients of the polynomial chaos using
Eq. (34), one can use the sampling method in which the sample
values of f ¼ ðf1; f2; . . . ; fnd

Þ are drawn from the distribution of
the f which in this case is the nd-dimensional independent Gauss-
ian distribution.

For each sampling point, giðfÞ and Uiðx; fÞ are evaluated. Using
all the samples, one can evaluate the expectation in the nominator
of the Eq. (34). If the dimension of the stochastic space is large, the
best strategy for sampling are Monte-Carlo or Latin hypercube
methods. The expectation in the denominator of Eq. (34) can be
calculated and tabulated offline. For examples on the first few of
the latter expectations, one can refer to [5]. A more elegant and
efficient way of calculating the expectations of the form
hUðx; fÞgðfÞi is to resort to Gauss–Hermite quadrature methods.
This method is efficient for small dimensions of the stochastic
space. In this method, the expectation operator hf i is approximated
as
P

iwifi, where wi are the weights in the Gauss–Hermite quadra-
ture method. If polynomial chaos expansion of order p is sufficient
to represent the random process under study, then pþ 1 sample
points on each stochastic domain are needed for calculation of
the hf i. The sample points for the multi-dimensional stochastic
space are constructed from the sample points on each stochastic
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figures.
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dimension using tensor product. The sample points on each sto-
chastic dimension are the roots of the Hermite polynomial Hpþ1.

For the one-dimensional case, one can write

hf i ¼
Z þ1

�1

1ffiffiffiffiffiffiffi
2p
p e�

f2
2 f ðfÞdf ð37Þ

¼ 1ffiffiffiffiffiffiffi
2p
p

Z þ1

�1
e�f2

e
f2
2 f ðfÞdf �

Xpþ1

i¼1

wif ð�xiÞ

where �xi are roots of the Hermite polynomial Hpþ1 and the associ-
ated weights are given by

wi ¼
2pðpþ 1Þ!

ffiffiffiffi
p
p

ðpþ 1Þ2½Hpð�xiÞ�2
� 1ffiffiffiffiffiffiffi

2p
p e

�x2
i
2 ð38Þ

For the multi-dimensional stochastic space with dimension nd

these weights can be calculated using the multiplication of
w1; . . . ;wnd

calculated for each dimension at the corresponding
coordinate of the sampling point.

6.2. Summary of the algorithm

First, let us look at the method used in [13]. Assume the infor-
mation on the texture is given through realizations of the texture
for each integration point on the macroscale. There for each inte-
gration point, one can write the following:

�a1ðs;xÞ ¼ �a1ðsÞ þ
X1
i1¼1

ffiffiffiffiffiffiffi
qi1

p
wi1
ðsÞ�ai1 ðxÞ ð39Þ

�a2ðs;xÞ ¼ �a2ðsÞ þ
X1
i2¼1

ffiffiffiffiffiffiffi
qi2

p
wi2 ðsÞ�ai2 ðxÞ

..

.

�ajðs;xÞ ¼ �ajðsÞ þ
X1
ij¼1

ffiffiffiffiffiffi
qij

q
wij
ðsÞ�aij ðxÞ

..

.

where �ajðs;xÞ is the value of the random field corresponding to the
integration point j; �aj is the expectation of the random field at inte-
gration point j, qij

and wij
ðsÞ are the eigenvalues and eigenfunctions

in Rodrigues space and �aij ðxÞ are the set of uncorrelated but not
necessarily independent random variables at integration point j.
In this framework, the realizations of the random variables at each
integration point are obtained using

�aij ðxÞ ¼
1ffiffiffiffiffiffiqij

p Z
R

�ajðs;xÞwij
ðsÞds ð40Þ

Using these realizations, one can use methods like the one pre-
sented in [12] to construct the probability distributions of these
random variables at each integration point j. Now if the random
variables at different integration points are correlated to each
other then the aforementioned methodology has no means of fig-
uring that out, in another words it cannot see the correlation be-
tween the set of random variables from different integration
points. So, the number of random variables one would end up with
would be the number of random variables needed for each integra-
tion point multiplied by the number of integration points. But if in
a problem we know that the number of random variables driving
the problem is much less than the aforementioned value then
one should think of alternative methods. To address this problem
one can use the method presented in this paper. A summary of
the proposed algorithm is given in here:
The random field can be approximated as:

âðx; s;xÞ ¼
X1
i¼1

ffiffiffiffiffi
qi
p

wiðsÞUiðx;xÞ ð41Þ

where qi; wiðsÞ are the eigenvalues and eigenfunctions (modes in
Rodrigues space) of the covariance C. After constructing the covari-
ance matrix and obtaining its eigenvalues and eigenfunctions the
random spatial modes Uiðx;xÞ corresponding to each mode in
Rodrigues space can be obtained by the following projection:

Uiðx;xÞ ¼
1ffiffiffiffiffiqi
p

Z
R

âðx; s;xÞwiðsÞds ð42Þ

Once the random spatial modes have been obtained, they are
decomposed to spatial and random space using polynomial chaos
decomposition

Uiðx;xÞ ¼
X

j

/ijðxÞgjðxÞ ð43Þ

where gjðxÞ are Hermite polynomials in Gaussian variables with
the dimension equal to the number of random variables driving
the stochastic problem and the order obtained from a study on con-
vergence of the decomposition and /ijðxÞ are coefficients of the
decomposition which vary from one integration point to another
and can be calculated using
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/ijðxÞ ¼
hUiðx; fÞgji

g2
j

D E ð44Þ

Now that all the components of Eq. (41) are known, it can be
used to reconstruct the random field. Notice that the realizations
of the random field were used to construct the covariance matrix.
Hence, Eq. (41) represents the underlying random field and its real-
izations can be reconstructed as many times as needed using the
realizations of the random variables in the Hermite polynomials.

Finally note that a convergence study has been conducted to
find the order of the Hermite polynomials but this has been done
assuming a fixed dimension for the random space. Selection of
the optimal stochastic dimensionality in the bio-orthogonal
decomposition to represent the given snapshots of texture at dif-
ferent points on the macroscale was not addressed here. A simple
approach to this problem may involve a progressive increase in the
stochastic dimensionality until the given data are represented best.
Such approach was not considered here (where a priori knowledge
was used to select the stochastic dimensionality) due to the high
computational cost involved.

7. Numerical examples

7.1. Example 1

In this example, the effect of uncertainty in the geometry of the
initial workpiece on the macroscale properties of the product of a
deformation process is investigated. It is assumed that the surface
of the initial workpiece Rbða;xÞ can be represented by a degree 6
Bézier curve (Eq. (14)).
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Fig. 15. Eigenvalues and eigenvectors from the bio-orthogonal decomposition of
the texture data.

Fig. 16. Top left: distribution of bulk modulus, top right: distribution of Young’s modu
macroscale properties with respect to the order of polynomial chaos used in the approx
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In this problem, the Bézier coefficients b1; b4; b5; b6 are as-
sumed to be deterministic ðbi ¼ 0:05; i ¼ f1;4;5;6gÞ and b2; b3

are considered as two independent random variables following
Nð1;0:1Þ distribution. If all the Bézier coefficients are equal to
0.05 the resulting cylinder will have radius 5.5 cm. Fig. 8 shows
few examples of workpieces constructed using realizations of b2

and b3. The workpiece is subjected to a forging process with forg-
ing velocity specified as 0:01 cm=s and when forged using a closed
forming die depicted in Fig. 9 the final product will be a cylinder of
radius 4.0 cm. The material considered here is FCC copper as
before.

For all points on the macroscale the underlying initial texture is
assumed to be constant ðA0ðx; sÞ ¼ 2:435Þ. This correspond to a tex-
ture having the same volume fraction for all possible orientations.
Although the initial texture is assumed to be deterministic in this
problem, the evolved texture at the end of the deformation process
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Fig. 17. Top left: distribution of bulk modulus, top right: distribution of Young’s modulus, bottom left: distribution of shear modulus, bottom right: the relative error with
respect to the order of polynomial chaos (for Point 2 on macroscale).
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Fig. 18. Top left: distribution of bulk modulus, top right: distribution of Young’s modulus, bottom left: distribution of shear modulus, bottom right: the relative error with
respect to the order of polynomial chaos (for Point 3 on macroscale).

B. Kouchmeshky, N. Zabaras / Computational Materials Science 48 (2010) 213–227 223
will be random due to the random initial geometry for the work-
piece and the propagation of uncertainty through the deformation
process.

A level 8 interpolating adaptive sparse grid corresponding to
1368 points for this particular stochastic problem has been used.
The coordinates of the collocation points are shown in Fig. 10.
The coordinates of each collocation point correspond to the vari-
ables n1 and n2 which are independent uniformly distributed ran-
dom variables between 0 and 1. These two random variables are
mapped to b2 and b3 using the Rosenblatt transformation (Eq.
(18)). An approximation is made in this step in which the tails of
the normal probability distribution are cut at values equal to the
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(mean� 6� std), where std is the standard deviation. This approx-
imation is to avoid the infinite values for b corresponding to
n1; n2 ¼ 0 or 1. Cutting the tails of the probability distribution
has negligent effect on the properties under study (mean and var-
iance of the macroscale properties). The mean and variance of the
bulk, Young’s and shear moduli are shown in Figs. 11–13, respec-
tively. The same problem has been solved using Monte-Carlo
(MC) method with a relatively small (4000) number of samples.
As expected, the error is bigger for the variance rather than the
mean but overall the results from both methods agree quite well.
The relative errors between the mean and the variance obtained
from these two methods are shown in Fig. 14. The relative error

used in these figures can be written as Er ¼ X�XMC
XMC

��� ���, where X is the
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Fig. 21. Mean and variance of the bulk modulus obtained from the reduced-order representation of texture.
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Fig. 22. Mean and variance of the Young’s modulus obtained from the reduced-order representation of texture.
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Fig. 23. Mean and variance of the shear modulus obtained from the reduced-order representation of texture.
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representation of texture.
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order representation of texture.
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macroscale property calculated using the samples of texture ob-
tained from the interpolants resulting from the sparse grid colloca-
tion method and XMC is the corresponding macroscale property
obtained from Monte-Carlo.

Next, a reduced-order representation of texture is constructed
using Eq. (22). First, the covariance matrix C is calculated using
Eq. (31). The first few eigenvalues and eigenvectors of this matrix
are shown in Fig. 15.

Using the first six significant modes in Fig. 15, the spatial modes
Uiðx;xÞ are calculated using Eq. (28). Next, Eq. (34) is used to ob-
tain the polynomial chaos approximation of Uiðx;xÞ. Having the
reduced-order representation, using Eqs. (22) and (32), 50,000
sample textures are constructed for the macroscale points. The
bulk, Young’s and shear moduli for these reconstructed textures
are calculated and compared to the values obtained with the
full-order texture in Figs. 16–20. These figures correspond to mac-
roscale points 1–5, respectively, shown in Fig. 9. In these figures,
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Fig. 27. Comparison of mean and variance of the macroscale properties with MC (relative
the top left plot represents the distribution of the bulk modulus
while the top right and bottom left show the distribution of
Young’s modulus and shear modulus, respectively. Also, the bars
represent the distribution of the corresponding macroscale prop-
erty calculated from samples of the texture obtained from the
interpolant constructed by sparse grid collocation (Eq. (19)). The
solid line shows the distribution of the same property calculated
from the samples obtained from the reduced representation of
the texture. The percentage of the relative error defined aseE :¼ kðXpþ1 � XpÞ=Xpþ1kL2ðXÞ is also shown vs. polynomial order in
the aforementioned figures.

Figs. 21–23 show the mean and the variance for the bulk,
Young’s and shear moduli, respectively, on the macroscale using
samples of textures reconstructed from the reduced-order model.
Reasonable match has been achieved in comparison to Figs. 11–13.

7.2. Example 2

The final texture of Example 1 is used as the initial texture in
this example. It should be noticed that except using the knowledge
from the first example on having a stochastic space with rank 2
there is no connection between these two examples. Example 2
deals with one stage deformation process with the random initial
texture computed in Example 1. The reader is reminded that using
the method in [13] for the same amount of knowledge (realizations
of the texture at each integration point on the macroscale and
knowledge of the rank of the stochastic space) one will end up with
independent random variables for each integration point without
exploiting the correlation between them.

As described in the previous example, Eq. (22) is used to con-
struct a reduced-order representation of the random process
A0ðx; s;xÞ. In this case, the first six eigenmodes of the covariance
matrix C (Eq. (31)) were used and for each of these eigenmodes,
Eq. (28) is used to construct the spatial eigenmodes. An order six
polynomial chaos expansion is used to approximate these spatial
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error). Top left: bulk modulus, top right: Young’s modulus, bottom: shear modulus.
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eigenmodes and the dimension of the random vector f is the same
as the dimension of the random vector driving the first example
(i.e. dimðfÞ ¼ 2). Thus using Eq. (36), it is obvious that for each
point on the macroscale and for each eigenmode in Rodrigues
space, a set of 28 polynomial coefficients are used. These coeffi-
cients along with the eigenmodes and eigenvectors of covariance
C (Eq. (31)) are used to reconstruct the random process A0ðx; s;xÞ
representing the initial texture of Example 2.

The workpiece and the die are as depicted in Fig. 1 and the forg-
ing velocity is considered to be 0.01 cm/s. When solving this prob-
lem using sparse grid collocation, the coordinates of each point on
the sparse grid correspond to n1 and n2 which are two independent
uniformly distributed random variables. Rosenblatt transform (Eq.
(18)) is used to transform these to f1 and f2 which follow an Nð0;1Þ
distribution. f1 and f2 are in turn used to construct samples of
Uðx;xÞ using Eq. (33) and finally Eqs. (22) and (32) were used to
construct the corresponding realization of A0ðx; s;xÞ that would
be used as the initial texture of the workpiece.

Figs. 24–26 show the mean and variance of the bulk, Young’s
and shear moduli obtained at the end of the deformation process
from a sparse grid collocation of level 7 with 1274 sample points.
These results were compared to those obtained with Monte Carlo
using 6000 samples in Fig. 27.
8. Conclusions

The effect of uncertain initial geometry and texture on the final
macroscale properties of the product of a multiscale deformation
process is investigated through examples. A reduced-order repre-
sentation of the random field representing texture is obtained
using a bi-orthogonal Karhunen–Loève expansion. This reduced-
order model introduces a new framework that makes the other-
wise intractable task of quantifying the effect of random initial tex-
ture in a multiscale problem feasible. Many unresolved issues
remain to be addressed including the selection of the dimensional-
ity of the random space when no prior knowledge is available,
simultaneously considering uncertainty sources on multiple scales
(e.g. macroscale and mesoscale) and other.

Acknowledgements

The senior author (NZ) acknowledges support from the Compu-
tational Mathematics program of AFOSR (Grant F49620-00-1-
0373), the Materials Design and Surface Engineering program of
the NSF (Award CMMI-0757824), the Mechanical Behavior of
Materials program Army Research Office (proposal to Cornell Uni-
versity No. W911NF0710519) and an OSD/AFOSR MURI09 award to
Cornell University on uncertainty quantification.

References

[1] V. Sundararaghavan, N. Zabaras, Int. J. Plast. 24 (2008) 1581–1605.
[2] V. Sundararaghavan, N. Zabaras, Int. J. Plast. 22 (2006) 1799–1824.
[3] S. Ganapathysubramanian, N. Zabaras, Comput. Methods Appl. Mech. Eng. 193

(2004) 5017–5034.
[4] S. Acharjee, N. Zabaras, Comput. Struct. 85 (5-6) (2007) 244–254.
[5] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach,

Dover Publications, 1991.
[6] D. Xiu, J.S. Hesthaven, SIAM J. Sci. Comput. 27 (2005) 1118–1139.
[7] X. Ma, N. Zabaras, J. Comput. Phys. 228 (2009) 3084–3113.
[8] S.K. Sachdeva, P.B. Nair, A.J. Keane, Probab. Eng. Mech. 21 (2006) 182–192.
[9] D. Venturi, X. Wan, G.M. Karniadakis, J. Fluid Mech. 606 (2008) 339–367.

[10] S. Acharjee, N. Zabaras, Int. J. Numer. Methods Eng. 66 (12) (2006) 1934–1954.
[11] D. Alireza, R. Ghanem, J. Red-Horse, Comput. Methods Appl. Mech. Eng. 196

(2007) 3951–3966.
[12] B. Kouchmeshky, N. Zabaras, Comput. Mater. Sci. 47 (2) (2009) 342–352.
[13] B. Ganapathysubramanian, N. Zabaras, Comput. Methods Appl. Mech. Eng. 197

(2008) 3560–3573.
[14] L. Anand, M. Kothari, J. Mech. Phys. Solids 44 (1996) 525–558.
[15] A. Heinz, P. Neumann, Acta Crystallogr. A47 (1991) 780–789.
[16] A. Kumar, P.R. Dawson, Comput. Methods Appl. Mech. Eng. 130 (1996).
[17] H.J. Bunge, Texture Analysis in Materials Science, Butterworth, 1983.
[18] U.F. Kocks, C.N. Tomé, H.R. Wenk, Texture and Anisotropy – Preferred

Orientations in Polycrystals and Their Effect on Materials Properties,
Cambridge University Press, Cambridge, 2000.

[19] A. Kumar, P.R. Dawson, Comput. Mech. 17 (1995) 10–25.
[20] M. Rosenblatt, Ann. Math. Stat. 23 (1952) 470–472.
[21] I. Babuska, F. Nobile, R. Tempone, A Stochastic Collocation Method for Elliptic

Partial Differential Equations with Random Input Data. ICES Report 2005, pp.
05–47.


	Microstructure model reduction and uncertainty quantification in multiscale deformation processes
	Introduction
	Constitutive problem and texture evolution
	Kinematics

	Stochastic multiscale problem definition
	Transforming the random variables

	Sparse grid interpolation: uncertainty propagation
	A multiscale reduced-order model of the uncertain initial microstructure
	Polynomial chaos expansion
	Computational aspects of polynomial chaos expansion
	Summary of the algorithm

	Numerical examples
	Example 1
	Example 2

	Conclusions
	Acknowledgements
	References


