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Abstract We focus on the analysis of variance (ANOVA) method for high dimen-
sional approximations employing the Dirac measure. This anchored-ANOVA repre-
sentation converges exponentially fast for certain classes of functions but the er-
ror depends strongly on the anchor points. We employ the concept of “weights
per dimension” to construct a theory that leads to the optimal anchor points. We
then present examples of a function approximation as well asnumerical solutions
of the stochastic advection equation up to 500 dimensions using a combination of
anchored-ANOVA and polynomial chaos expansions.

1 Introduction

We consider anN-dimensional functionf , which can be decomposed as

f (x1,x2, · · · ,xN)= f0+
N

∑
j1=1

f j1(x j1)+
N

∑
j1< j2

f j1, j2(x j1,x j2)+ · · ·+ f j1, j2,··· , jN(x j1, j2,··· , jN),

(1)
where f0 is a constant, andfS are |S|-dimensional functions, called the|S|–order
terms. (Here|S| denotes the cardinality of the index setS). This is the so-called
ANOVA model. Here we consider the domainIN = [0,1]N, in a tensor-product form.
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The terms in the ANOVA decomposition are computed as follows

f0 =
∫

[0,1]N
f (x)dµ(x). (2a)

fS =

∫

[0,1]N−|S|
f (x)dµ(x−S)− ∑

T⊂S

fT(xT). (2b)

We note that there are several forms of ANOVA decomposition associated with
different measures. Here we focus on the one using the Dirac measure,dµ(x) =
δ (x−c)dx (c∈ [0,1]), which leads to theanchored-ANOVA decomposition. The
point “c”, which is often arbitrarily selected, is called the “anchor point”. Another
type is based on the Lebesgue measure,dµ(x) = ρ(x)dx; this is the unanchored-
ANOVA decomposition. See [5, 1] for details.

All the distinct ANOVA terms are mutually orthogonal with respect to the corre-
sponding measure. Hence, for every termfS with S⊆ {1,2, · · · ,N}, we have

∫

[0,1]
fS(xS)dµ(x j) = 0, if j ∈ S,

and
∫

[0,1]N
fS(xS) fT(xT)dµ(x) = 0, if S 6= T.

The order at which we truncate the ANOVA model is calledeffective dimension,
beyond which the difference between the ANOVA model and the truncated expan-
sion in a certain measure is very small, see [10, 2, 12, 9]. It is not difficult to show
that the variance off can be a sum of variances of the ANOVA terms

σ2( f ) =
∫

[a,b]N
f 2(x)dx− (

∫

[a,b]N
f (x)dx)2 = ∑

/06=S⊆{1,2,···,N}

∫

[a,b]|S|
f 2
S(xS)dxS. (3)

or in compact form
σ2( f ) = ∑

/06=S⊆{1,2,···,N}

σ2
S( f ). (4)

The effective dimension off in the superposition sense is the smallest integerds

satisfying

∑
0<|S|≤ds

σ2
S( f ) ≥ pσ2( f ), (5)

whereS⊂ {1,2, · · · ,N}. This implies that we will ignore terms in the ANONA
model corresponding to more thands interactions. The effective dimension is mea-
sured in theL2–norm. Note thatp is a proportionality constant with 0< p < 1 and
close to 1, e.g.,p = 0.99 in [2].
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2 Weights and Effective Dimension

In order to obtain an estimate of the effective dimension, weadopt proper weights,
which weight in some sense the contribution of each dimension. The concept of
weights here is analogous to the concept employed in analyzing the Quasi Monte
Carlo (QMC) method [11]. In particular, the idea is to define appropriate weights
so that their minimization also leads to minimization of errors in QMC, see [8, 3].
In general, the weights should be in the interval of [0,1]. Inaddition, most of the
weights should be less than one in order to have a low effective dimension for a
nominally high-dimensional function.

Assuming a function in tensor product form, the weights in [11] were determined
by the mean and the variance of the corresponding one-dimensional functions. This
can be easily seen from the definition of the mean effective dimension [9]. Specifi-
cally, given a tensor product function

f (x) =
N

∏
k=1

fk(xk),

the mean and the variance of the function are

µk =

∫ 1

0
fk(xk)dxk < ∞, k = 1,2, · · · ,N,

λ 2
k =

∫ 1

0

(

fk(xk)− µk
)2

dxk < ∞, k = 1,2, · · · ,N.

The ANOVA terms and the corresponding variances are [9]:

fS = ∏
k∈S

(

fk(xk)− µk
)

·∏
k/∈S

µk, (1)

σ2
S( fS) = ∏

k∈S

λ 2
k ∏

k/∈S

µ2
k .

Then, the weightsγk’s are defined as follows:

γk =
λ 2

k
µ2

k
if µk 6= 0 for k = 1,2, · · · ,N.

In the unanchored ANOVA (i.e., using the Lebesgue measure),the effective di-
mension has a more clear meaning. The truncation error, whenthe effective dimen-
sion isν, by definition, is estimated as

∥

∥

∥

∥

∥

f − ∑
|S|≤ν

fS

∥

∥

∥

∥

∥

2

L2

≤ (1− p)(‖ f‖2− (

∫

IN
f dx)2),

where we use the equality‖ f‖2 = (
∫

IN f dx)2 + σ2( f ). Hence, we have
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∥

∥

∥

∥

∥

f − ∑
|S|≤ν

fS

∥

∥

∥

∥

∥

2

≤ (1−p)(1−(

∫

IN f dx
‖ f‖

)2)‖ f‖2 = (1−p)(

∫

IN
f dx)2(

N

∏
k=1

(1+γk)−1).

(2)

Remark 2.1 From (2), we have that
∥

∥ f −∑|S|≤ν fS
∥

∥

‖ f‖
≤

√

1− p(1−
N

∏
k=1

(1+ γk)
−1)

1
2 < 0.1,

by choosing p= 0.99. In fact, when p is chosen as 0.99 the effective dimension is
not always an integer. The estimate above corresponds to theworst case and, in fact,
the error can be far better; see [9] for specific examples.

Remark 2.2 From the definition of weights, we have that

∥

∥

∥

∥

∥

f − ∑
|S|≤ν

fS

∥

∥

∥

∥

∥

2

= (

∫

IN
f dx)2

N

∑
m=ν+1

∑
|S|=m

∏
k∈S

γk.

According to(2),

N

∑
m=ν+1

∑
|S|=m

∏
k∈S

γk ≤ (1− p)(
N

∏
k=1

(1+ γk)−1). (3)

As already mentioned, when a function is of low effective dimension, the dom-
inating weights are much smaller than one. In fact, ifµk 6= 0 andγk < 1 for all
k = 1,2, · · · ,N, the mean effective dimension is [9]

ds =
∑N

k=1
γk

γk+1

1−∏N
k=1

1
γk+1

=
N−∑N

k=1
1

γk+1

1−∏N
k=1

1
γk+1

. (4)

While the previous discussion concerns the ANOVA version with Lebesque mea-
sure, it is by analogy that we can extend the concept of weights to the anchored-
ANOVA as well. To this end, we define the weights using theL∞–norm, as follows:

γk =
‖ fk− fk(ck)‖∞

| fk(ck)|
, when f (c) 6= 0. (5)

Lemma 2.3 Assuming that the anchored-ANOVA is truncated at theν̃–th order, and
that pν̃ satisfies

N

∑
m=ν̃+1

∑
|S|=m

∏
k∈S

γk = (1− pν̃)(
N

∏
k=1

(1+ γk)−1).

Then, the relative error in L∞–norm can be estimated as
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∥

∥ f −∑|S|≤ν̃ fS
∥

∥

L∞

‖ f‖L∞
≤ (1− pν̃)(

N

∏
k=1

(1+ γk)−1)(
N

∏
k=1

| fk(ck)|

‖ fk‖L∞
). (6)

Also, for one-signed functions, if the anchored points c= (c1,c2, · · · ,cN) are se-
lected such that

fk(ck) =
1
2

max
[0,1]

fk(xk)+
1
2

min
[0,1]

fk(xk).

Then,γk =
∣

∣

∣

max[0,1] fk(xk)−min[0,1] fk(xk)

max[0,1] fk(xk)+min[0,1] fk(xk)

∣

∣

∣
, and it minimizes the weights defined in(5).

The minimized weights, in turn, minimize the error estimatein the last lemma.

Proof. Recalling the results from the ANOVA using Lebesgue measurewith the
same weights, we have

∥

∥ f −∑|S|≤ν fS
∥

∥

L∞

‖ f‖L∞
=

∥

∥ f −∑|S|≤ν fS
∥

∥

L∞

∏N
k=1 | fk(ck)|

∏N
k=1 | fk(ck)|

‖ f‖L∞

≤
N

∑
m=ν̃+1

∑
|S|=m

∏
k∈S

γk(
N

∏
k=1

| fk(ck)|

‖ fk‖L∞
)

≤ (1− pν̃)(
N

∏
k=1

(1+ γk)−1)(
N

∏
k=1

| fk(ck)|

‖ fk‖L∞
).

This proves the error estimate. The following will completethe proof of how to
minimize weights.

Suppose thatfk does not change sign over the interval[0,1]. Without loss of
generality, letfk > 0. Denote the maximum and the minimum offk by Mk andmk,
respectively, and assume thatfk(ck) = αkMk +(1−αk)mk whereαk ∈ [0,1]. Then

‖ fk− fk(ck)‖∞ = max(Mk− fk(ck), fk(ck)−mk) = (Mk−mk)max(1−αk,αk),

and the weightγk is

‖ fk− fk(ck)‖∞
| fk(ck)|

=
(Mk−mk)max(1−αk,αk)

αkMk +(1−αk)mk
.

Let us consider the function ofg(αk) = (1−y)max(1−αk,αk)
αk+(1−αk)y

, whereαk ∈ [0,1], y=
mk
Mk

∈ (0,1) and see how to chooseαk. Notice that

g′(αk) =

{ y−1
(αk+(1−αk)y)2 < 0 if αk ∈ (0, 1

2),
(1−y)y

(αk+(1−αk)y)2 > 0 if αk ∈ (1
2,1).

From this we know thatg(1
2) reaches the minimum ofg(αk) with αk ∈ (0,1). Then,

αk = 1
2, γk = g(1

2) =
1−

mk
Mk

1+
mk
Mk

< 1.
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Actually, according to the definition of weights,

(
N

∏
k=1

(1+ γk)−1)(
N

∏
k=1

| fk(ck)|

‖ fk‖L∞
) =

N

∏
k=1

| fk(ck)|+‖ fk− fk(ck)‖L∞

‖ fk‖L∞
−

N

∏
k=1

| fk(ck)|

‖ fk‖L∞
.

If αk > 1
2,

N

∏
k=1

(1+ γk)−1)(
N

∏
k=1

| fk(ck)|

‖ fk‖L∞
)

=
N

∏
k=1

αkMk +(1−αk)mk +(Mk−mk)max(1−αk,αk)

Mk
−

N

∏
k=1

αkMk +(1−αk)mk

Mk

=
N

∏
k=1

(

2αk(1−
mk

Mk
)+

mk

Mk

)

−
N

∏
k=1

(

αk(1−
mk

Mk
)+

mk

Mk

)

.

Hence, the first term in the last inequality increases fasterthan the last term, since
2αk(1−

mk
Mk

)+ mk
Mk

> αk(1−
mk
Mk

)+ mk
Mk

for αk > 1
2. If αk < 1

2,

N

∏
k=1

(1+ γk)−1)(
N

∏
k=1

| fk(ck)|

‖ fk‖L∞
) = 1−

N

∏
k=1

(

αk(1−
mk

Mk
)+

mk

Mk

)

.

Thusαk = 1
2 is the best choice when it minimizes the error estimate. Notice here the

choice ofαk = 1
2 also minimizes the weight. This ends the proof.

Remark 2.4 Weights and corresponding ancor points can also be defined inthe
L1-norm using appropriate quadrature formulas, e.g. see [6].

3 Numerical Examples

Here we present two examples, first in approximating a high-dimensional function
and subsequently in solving the stochastic advection equation.

Example 1:We consider the Genz function [4]f5 = ∏N
j=1exp(−c j

∣

∣x j −wj
∣

∣)
with the parametersc j = exp(−0.2 j) andwj following a uniform distribution.

w = (0.695106,0.851463,0.413355,0.410178,0.226185,

0.7078,0.478756,0.183078,0.0724332,0.483279)

The centered point refers to(1
2, 1

2, · · · , 1
2), while the optimal point is the point cho-

sen according to the Lemma 2.3. Both results in table 1 demonstrate exponential
accuracy in terms of the truncation dimension but using the optimal anchor points
leads to accuracy close to three orders better than using thecentered point.

Example 2: Next we consider the stochastic advection equation
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truncation ordercentered pointoptimal point
1 6.6207×10−2 3.7949×10−3

2 5.2552×10−3 8.8265×10−5

3 2.3796×10−4 1.2680×10−6

4 6.2412×10−6 1.1568×10−8

5 9.0972×10−8 6.6648×10−11

Table 1 Error in the mean:N = 10.
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Fig. 1 Mean solution using the optimum anchor pointc1 (left) and a different pointc2 (right). Here
M = 4;L = 1.

∂u
∂ t

+V(t;ξ )
∂u
∂x

= 0

in the interval [−1,1] with periodic boundary conditions and initial condition
u(x,t = 0) = sin(π(x+ 1)). The advection velocity is a stochastic process with
zero mean and is represented using a Karhunen-Loeve expansion, i.e.V(t,ξ ) =

∑M
k=0

√

λkφk(t)ξk, with ξk being uncorrelated and also independent variables fol-
lowing a uniform distribution. The eigenpairs(λk,φk) are derived from the co-
variance kernel of the form exp[−|t1− t2|/L], whereL is the correlation length.
Here we consider three values ofL corresponding to different truncations, i.e.,
(L,M) = (1,4);(0.1,10);(0.005;500) selected so that 90% of the energy is cap-
tured by the coefficients of the truncated expansion. In the simulations we employ a
Fourier-collocation in space and a probabilistic collocation method in random space
using Legendre-chaos (8th-order).

In figure 1 we plot the mean solution att = 0.5 in order to compare the effect of
the anchor point on the convergence of the ANOVA expansion. We see that for the
optimum pointc1 = (0,0, . . . ,0) the solution converges to the exact solution when
ν = 2 but for another pointc2 = (1,1, . . . ,1) the solution converges to the exact
solution only if ν = M = 4, i.e., for the full expansion. Here the exact solution is
computed as in [7]. Using the optimum point we can now vary thecorrelation length
L and produce accurate solutions in the high-dimensional space for small values of
L and up toM = 500 dimensions as shown in figure 2.
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Fig. 2 Mean solution (left) and Variance (right) using the optimumanchor pointc1 for different
values of the correlation length (L = 1,0.1,0.005) and corresponding truncation dimension (ν =
2,2,1).
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