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We introduce the reduced basis method (RBM) as an efficient tool for parametrized scatter-
ing problems in computational electromagnetics for problems where field solutions are
computed using a standard Boundary Element Method (BEM) for the parametrized electric
field integral equation (EFIE). This combination enables an algorithmic cooperation which
results in a two step procedure. The first step consists of a computationally intense assem-
bling of the reduced basis, that needs to be effected only once. In the second step, we com-
pute output functionals of the solution, such as the Radar Cross Section (RCS),
independently of the dimension of the discretization space, for many different parameter
values in a many-query context at very little cost. Parameters include the wavenumber,
the angle of the incident plane wave and its polarization.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Many applications related to computational optimization, control and design, require the ability to rapidly, perhaps even
in real time, and accurately predict some output under the variation of a set of parameters. A similar need can be found in the
development of large simulation based databases or the development of efficient way to quantify uncertainty and its impact.

In such cases, the solution is often implicitly related to a set of parameters l, which denotes the input. In practice the
parameters can be related to the description of sources, materials, geometries, uncertainties and so on. In such cases we have
an implicit relationship between the input and the output through the partial differential equation.

In this work we shall pursue the development of efficient and accurate computational methods for problems of electro-
magnetics. In particular we shall discuss the methods based on the electric field integral equation (EFIE) [18], given on ab-
stract form as
aðJðlÞ; Jt ;lÞ ¼ f ðJt; lÞ; 8Jt 2 V ;
where the parameter space is denoted by D, V is some appropriate functional space and a(�, �;l), f(�;l) a sesquilinear resp.
linear form for any parameter value l 2 D.

Our primary goal is to develop a systematic approach to obtain an accurate and reliable approximation of the output of
interest at very low computational cost for applications where many queries, i.e., solutions, are needed. We shall explore the
use of a reduced basis method by recognizing, and implicitly assuming, that the parameter dependent solution is not simply
. All rights reserved.
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an arbitrary member of the infinite-dimensional space associated with the partial differential equation, but rather that it
evolves on a lower-dimensional manifold induced by the parametric dependence.

On a discrete level, this assumption can computationally be tested for particular cases. To do so, consider the underlying
abstract discrete problem: for any given parameter value l 2D, find Jh 2 Vh such that
Fig. 1.
Differen

Please
doi:10
aðJhðlÞ; Jt; lÞ ¼ f ðJt ;lÞ; 8Jt 2 Vh; ð1Þ
where Vh is an appropriate discrete subspace of V. Then, compute a singular value decomposition (SVD) of the matrix con-
sisting of the column-wise representation of the numerical approximations Jh(l) for different values l of a fine point discret-
ization N of the parameter space D.

In order to obtain the numerical solution, any reasonable standard solver can be used. In the framework of this work, we
have focused on the Boundary Element Method using the lowest order Raviart–Thomas elements also called Rao–Wilton–
Glisson basis [32]. However, the setting is not restricted to the particular choice. These solutions are what we define as
the truth solutions and which we seek to approximate.

The left eigenvectors of the SVD corresponding to the N most significant singular values build an ideal reduced basis. More
precisely the numerical solution for any particular parameter value l 2 N can be approximated by a linear combination of
the left eigenvectors up to a precision of the (N + 1)-th singular value (in the l2-norm). Therefore any numerical solution can
be represented, up to a certain precision, using the low dimensional subspace spanned by the left eigenvectors of the SVD.

Fig. 1(a) plots the singular values of the matrix consisting of column-wise boundary element solutions for different wave
numbers and incident wave directions of an incident plane wave being diffracted on a scatterer illustrated in Fig. 3. In par-
ticular, the incident wave direction is expressed in spherical coordinates and we consider the case of (k,h) 2 [0,25] � [0,p]
and / = 0 fixed. We observe exponential convergence for the first singular values and note that an error in the current of 10�7

can be achieved with 200 basis functions.
In Fig. 1(b), different types of SVD-profiles are plotted. Case 1 is the repetition of the real case of the figure (a) and case 2 is

a perfect exponential decrease of the singular values. Case 3 illustrates a (hypothetical) case of a problem where the discrete
solution space can not be represented by a low dimensional subspace and no exponential convergence for the first singular
values is observed.

In the framework of parametrized scattering problems the exponential decay of the singular values is an essential
assumption and reasonable for the types of applications considered here. In what follows, we therefore make the following
assumption:

Assumption 1.1 (Existence of a low dimensional reduced basis). The subspace Mh :¼ fJhðlÞj8l 2 Dg,where Jh(l) is the
numerical solution of the EFIE for l defined by (1), is of low dimensionality, i.e.
Mh ¼
Tol spanffiji ¼ 1; . . . ;Ng
up to a certain given tolerance Tol for some properly chosen ffigN
i¼1 (left eigenvectors of the SVD) and moderate

N � N ¼ dimðDiscretization spaceÞ. More precisely, we assume that the relation between the achieved tolerance Tol with re-
spect to the number of elements N of the ‘‘ideal’’ reduced basis is exponentially decreasing.

Under this assumption we can expect that as l varies, the set of all solutions can be well approximated by a finite and low
dimensional vector space.
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The basic of the reduced basis method was first introduced in the 1970’s for nonlinear structural analysis [1,28] and it was
subsequently abstracted, analyzed [4,34] and generalized to other type of parametrized partial differential equations [17,29].
Most of these earlier works focus on arguments that are local in the parameter space. Expansions to a low dimensional man-
ifold are typically defined around a particular point of interest and the associated a priori analysis relies on asymptotic argu-
ments on sufficiently small neighborhoods [14,30]. In such cases, the computational improvements are quite modest. In
[2,21] a global approximation space was built by using solutions of the governing PDE at globally sampled points in the
parameter space, resulting in a much more efficient method. However, no a priori theory or a posteriori error estimators
were developed in this early work.

In recent years, a number of novel ideas and essentially new features have been presented [3,16,22,24,31,35,37–39]. In
particular, global approximation spaces are used and uniform exponential convergence of the reduced basis approximation
has been numerically observed and confirmed in [25] where the first theoretical a priori convergence result for a one dimen-
sional parametric space problem is presented. The development of rigorous a posteriori error estimators has also been pre-
sented, thereby transforming the reduced basis methods from an experimental technique to a computational method with a
true predictive value.

Furthermore, in cases where the problem satisfies an affine assumption; that is, the operators and the data can be written
as a linear combination of functions with separable dependence of the parameter and the spatial variation of the data, an off–
line/on–line computational strategy can be formulated. The off–line part of the algorithm, consisting of the generation of the
reduced basis space, is l-independent and can be done in preprocessing. The computational cost of the on–line part depends
solely on the dimension of the reduced basis space and the parametric complexity of the problem, while the dependence on
the complexity of the truth approximation has been removed, resulting in a highly efficient approach.

While there is substantial past work on the development of reduced basis methods for both coercive and non-coercive
problems [27,31,36,9], the majority of the past work has been done based on partial differential equations. However, many
problems of industrial and applied character are more efficiently solved using integral equations, i.e., computational tech-
niques based on a direct discretization of the electric/magnetic/combined fields integral equations [18] continues be the pre-
ferred and most efficient approach for large scale electromagnetic computations.

Apart from numerous central computational and mathematical differences introduced by the focus on integral equations,
an essential difference that emerges is the lack of affine operators, required to ensure an efficient online/offline separation.
Unless this is addressed in detail, as we do here, the computational cost of the overall algorithm is not achieved. In this work
we continue the work in [3] and present a significant extension of this work to ensure accuracy and efficiency by an hp-like
empirical interpolation method.

In Section 2 we introduce the underlying physical problem and derive its representation as an integral equation which
depends on the parameter values. Section 3 explains how the problem can be solved using the standard Boundary Element
Method (BEM) for a fixed parameter value. The reduced Basis method in combination with the BEM in an algorithmic coop-
eration (rather than a competition) is then applied to solve the general parametrized problem in Section 4. A key-tool for this
type of integral equation, due to the non-affine nature of the kernel function, is the Empirical Interpolation Method (EIM)
introduced in Section 5. It is further developed to shift the workload from the Online part of the RBM to Offline part resulting
in the Elementwise Empirical Interpolation Method (EEIM). Finally, in Section 6 we present some numerical examples of the
RBM and we draw our conclusions in Section 7.
2. Parametrized electric field integral equation (lEFIE)

The underlying physical problem is the following: An incident plane wave Einc is scattered at the surface of a perfect con-
ductor, see Fig. 2, obeying Maxwell’s equations and the Silver–Müller radiation condition at infinity. The resulting scattered
Fig. 2. Illustration of the problem setting.
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electric field is denoted by Esc. The perfect conductor can either have a volume or simply consist of a surface and is denoted
by Xsc. Its complement is denoted by X ¼ R3 nXsc and its surface by C, with the outer unit normal n. Whenever the scatterer
consists only of a surface, no outer resp. inner normal can be defined and we use an arbitrary but fixed convention for n. The
magnetic permeability l and electric permittivity e are assumed to be homogeneous in X.

Denote by E the total electric field and by H the magnetic field. Under the assumption of a harmonic time dependence, the
electric and magnetic complex fields E, H 2 Hcurl(X) satisfy
Please
doi:10
ixlH� curlE ¼ 0 in X; ð2Þ
ixeEþ curlH ¼ 0 in X; ð3Þ
with x > 0 being the angular frequency. It is convenient to introduce the wavenumber k and the impedance Z
k ¼ x
ffiffiffiffiffiffi
le
p

;

Z ¼
ffiffiffiffiffiffiffiffi
l=e

p
:

Then, ixl = ikZ, ike = ik/Z and substituting (2) into (3) yields
curl curl E� k2E ¼ 0 in X: ð4Þ
In addition we assume the Silver–Müller radiation condition at infinity
curlEscðxÞ � x
jxj � ikEscðxÞ

����
���� ¼ O

1
jxj

� �
as jxj ! 1 ð5Þ
and the boundary condition
ctE ¼ 0 on C
since the body Xsc is assumed to be a perfectly conducting scatterer. Here, ct denotes the tangential trace operator on the
surface C defined by ctv = n � (v � n) for sufficiently smooth v and surface C. As our interest is the scattering of an incident
plane wave by the surface C of the perfect conductor Xsc we write
EðxÞ ¼ EincðxÞ þ EscðxÞ with EincðxÞ ¼ peikk̂�x; ð6Þ
where the unit vector k̂ denotes the wave direction and p the polarization (lying in the plane perpendicular to k̂). Note that
Einc is assumed to satisfy (4). Thus the unknown is no longer the total field E but the scattered field Esc with the boundary
condition
ctEsc ¼ �ctEinc on C:
Next, we introduce a new unknown tangential vector field J, the electric current on the surface C (being J = n � HjC on the
surface for closed surfaces C). Denote by Hcurl(X) the natural solution space of Maxwell’s equations in X and define H�

1
2

divðCÞ
as the trace space of n � Hcurl(X) on the surface, see [5–8,10] for different types of surfaces. The electric and magnetic field E,
H can be represented in X depending solely on the electric and magnetic current on the body, a result known as the Strat-
ton–Chu representation formula. In the case of a perfect conductor, it simplifies to
EðxÞ ¼ EincðxÞ þ ikZTkJðxÞ; ð7Þ
where the (linear) potential Tk is defined as
TkJðxÞ ¼
Z

C
Gðr; kÞJðyÞ þ 1

k2rC;xGðr; kÞdivC;yJðyÞ
� �

dy
in X with r = jx � yj and where G(�;k) is the fundamental solution of the Helmholtz operator D + k2 given as
Gðr; kÞ ¼ eikr

4pr
:

Applying the tangential trace to (7) and invoking the boundary condition for E yields the electric field integral equation
(EFIE):
ikZSkJðxÞ ¼ �ctEincðxÞ; ð8Þ
where the boundary potential Sk is defined as
Sk ¼ ct � Tk:
Let Jt 2 H�
1
2

divðCÞ be a test function, then the weak form of the EFIE reads: find J 2 H�
1
2

divðCÞ such that
ikZ
Z

C
SkJðxÞ � JtðxÞdx ¼ �

Z
C
ctEincðxÞ � JtðxÞdx
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
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for all test functions Jt 2 H�
1
2

divðCÞ, and where JtðxÞ denotes the complex conjugate of Jt(x). Applying integration by parts then
yields: find J 2 H�

1
2

divðCÞ such that
Please
doi:10
aðJ; JtÞ ¼ f ðJtÞ 8Jt 2 H�
1
2

divðCÞ;
with, using the notation r = jx � yj,
aðJ; JtÞ ¼ ikZ
Z

C

Z
C

Gðr; kÞ JðxÞ � JtðyÞ �
1

k2 divC;xJðxÞdivC;yJtðyÞ
� �

dxdy;

f ðJtÞ ¼ �
Z

C
ctEincðyÞ � JtðyÞdy:
Let us now introduce the parametrized EFIE. To do so, let the unit wave direction k̂ be parametrized in spherical coordinates
(h,u), i.e.
k̂ ¼ �
cosðuÞ sinðhÞ
sinðuÞ sinðhÞ

cosðhÞ

0
B@

1
CA; h 2 ½0;p�; u 2 ½0;2pÞ:
Further, the plane perpendicular to k̂ can be parametrized by the two following basis vectors
eh ¼
cosðuÞcosðhÞ
sinðuÞ cosðhÞ
� sinðhÞ

0
B@

1
CA and eu ¼

� sinðuÞ
� cosðuÞ

0

0
B@

1
CA:
The polarization in (6) is given by ph; pu 2 C such that
p ¼ pheh þ pueu:
The EFIE problem is parametrized by a 7-tuple l 2 R7;l ¼ ðk; h;u; pr
h; p

i
h; p

r
u; p

i
uÞ, where:

k: is the wave number,
h: is the first spherical coordinate of the wave direction k̂,
u: is the second spherical coordinate of the wave direction k̂,
pr

h: is the real part of ph,
pi

h: is the imaginary part of ph,
pr

u: is the real part of pu,
pi

u: is the imaginary part of pu.

For notational convenience we use the abbreviation l ¼ ðk; k̂;pÞ and generally assume that the parameter values lie in the
parameter domain D � Rp, with 1 6 p 6 7 active parameters.

It is well-known [10,19] that the EFIE is not well-posed for scatterers with volume and where k is a resonant wavenum-
ber, i.e. if the interior Maxwell problem on Xsc for k does not have a unique solution for homogeneous boundary conditions.
Let us denote by K0 the spectrum of resonant wave numbers, i.e. K0 = {k1,k2, . . .}, in the case of dealing with a scatterer with a
volume. We assume that K0 \D ¼ ;.

The parametrized electric field integral equation reads: For any fixed parameter value l 2 D, find JðlÞ 2 H�
1
2

divðCÞ such that
aðJðlÞ; Jt ;lÞ ¼ f ðJt; lÞ 8Jt 2 H�
1
2

divðCÞ;
with
aðJ; Jt ;lÞ ¼ ikZ
Z

C

Z
C

Gðr; kÞ JðxÞ � JtðyÞ �
1

k2 divC;xJðxÞdivC;yJtðyÞ
� �

dxdy;

f ðJt; lÞ ¼ �
Z

C
ctEincðy; lÞ � JtðyÞdy:
Note that the sesquilinear form a is only dependent on the parameter k, and not on the other parameters. Therefore, we also
use a(J, Jt;k) as notation when the sole dependence on k shall be highlighted.

2.1. Output functional: Radar Cross Section (RCS)

The output of interest in parametrized scattering problems is the Radar Cross Section (RCS) as an indication of the far field
associated with a scatterer. The RCS is a functional of the electric current J on the surface and is defined by
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
.1016/j.jcp.2011.03.023
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Please
doi:10
RCSðJ; d̂; kÞ :¼ 10log10 4p
js1ðJ; d̂; kÞj2

jEincðlÞj2

 !
;

where s1 is a linear functional of the electric current J given by
s1ðJ; d̂; kÞ :¼ ikZ
4p

Z
C

d̂� ðJ� d̂Þeikx�d̂dx
for some given directional unit vector d̂. The RCS signal describes the energy of the total electric field E at infinity towards the
direction
d̂ ¼
cosðurcsÞ sinðhrcsÞ
sinðurcsÞ sinðhrcsÞ

cosðhrcsÞ

0
B@

1
CA; hrcs 2 ½0;p�; urcs 2 ½0;2pÞ:
3. BEM for the EFIE with fixed parameter

For any fixed parameter value, the EFIE can subsequently be discretized using a Galerkin approach. Replacing the func-
tional space H�

1
2

divðCÞ by some conforming finite dimensional subspace yields the Boundary Element Method (BEM), also called
Method of Moment (MoM). A common choice as discretization space is the lowest order complex Raviart–Thomas space RT0,
also called the Rao–Wilton–Glisson elements in the electromagnetic community.

Let T h be a family of shape-regular triangulations decomposing C into flat triangles. For a fixed triangulation let hT denote
the mesh size of any element T 2 T h and let h be the elementwise constant function such that hjT = hT.

By RT0(T) we denote the local Raviart–Thomas space on C of complex-valued functions on T 2 T h defined by (cf. [13,33])
RT0ðTÞ :¼ vhðxÞ ¼ aþ bxja 2 C2; b 2 C; x 2 T
� 	

:

On a global level, the Raviart–Thomas space is defined by
RT0 :¼ vh 2 H0
divðCÞjvhjT 2 RT0ðTÞ 8T 2 T h

n o
;

where H0
divðCÞ is defined in a standard manner
H0
divðCÞ :¼ v 2 L2

t ðCÞjdivCv 2 L2ðCÞ
n o

:

Observe that the approximation space is conforming, i.e. RT0 � H0
divðCÞ � H�

1
2

divðCÞ. The Boundary Element Method then con-
sists of seeking Jh(l) 2 RT0, for any fixed parameter value l 2 D, such that
aðJhðlÞ; Jt; lÞ ¼ f ðJt ;lÞ 8Jt 2 RT0: ð9Þ
4. Reduced basis method

The reduced basis method consists of approaching the ‘‘ideal’’ reduced basis, as described previously, by
WN ¼ spanfJhðliÞji ¼ 1; . . . ;Ng for a set of carefully chosen parameters SN ¼ fligN

i¼1. The reduced basis approximation is de-
fined by: for any l 2 D, find JNðlÞ 2WN such that
aðJNðlÞ; JN;t ;lÞ ¼ f ðJN;t ;lÞ 8JN;t 2WN: ð10Þ
The following questions arise:

	 How can SN be chosen to get accurate approximations?
	 How can problem (10) be solved in an efficient way?

They are discussed in the following sections.
Let us quickly introduce some notation: matrices and vector of size N �N resp. N are denoted in curly letters such as A

and b. The simple and double underlines stand for vectors resp. matrices. On the other hand, matrices and vectors indepen-
dent of the dimension of the boundary element space N are denoted such as A and b.
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
.1016/j.jcp.2011.03.023
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Pl
do
Algorithm: RB-offline

Algorithm1: Offline-procedure of the reduced basis method:the greedy algorithm to

assemble the reduced basis space

Input: Initial parameter value l1

Output: Reduced basis space WN and associated parameter samples SN

begin
Set S1 ¼ l1 and W1 ¼ spanfJhðl1Þg with Jh(l1), solution of (9) with

l = l1

for n = 2, . . . , N do
for each l 2 N do

Compute Jn�1ðlÞ 2Wn�1 solution of (10)

Compute an error indicator gðlÞ 
 kJhðlÞ � Jn�1ðlÞk
H
�1

2
div
ðCÞend

Choose ln = argmaxl2Ng(l)

Sn ¼ Sn�1 [ ln

Compute the truth solution Jh(ln), solution of (9) with l = ln

Wn ¼ spanfWn�1; JhðlnÞg
end

end
4.1. Accuracy

The question of accuracy of the reduced basis approximation is uniquely defined by the choice of the parameter sample
space SN and is determined using a greedy type algorithm, see [20,36] for an overview. Denote by N some finite dimensional
point-set of D. The algorithm is illustrated in Algorithm 1.

Note that in the practical implementation, we use the residual of the linear system
ease
i:10
AðlÞbðlÞ ¼ f ðlÞ ð11Þ
as an error indicator of kJhðlÞ � JnðlÞk
H
�1

2
div
ðCÞ

. The matrix AðlÞ and vectors f(l) resp. b(l) denote the sesquilinear form a(�, �;l),

the right hand side f(�;l) and the solution Jh(l) expressed in the standard basis of RT0. This linear system represents the dis-
crete variational problem (9), in the standard basis of RT0, defining the boundary element approximation for a given param-
eter value, i.e. the solution we are trying to approximate by the reduced basis method. It is called the truth approximation in
the framework of Reduced Basis Methods.

More precisely, we choose the following quantity as an error estimation
gðlÞ ¼
kAðlÞbrbðlÞ � f ðlÞkl2

max
l2N
kf ðlÞkl2

; ð12Þ
where brb(l) represents the Reduced Basis approximation Jn(l) in the standard basis of RT0. Note that due to the equivalence
of norms on finite dimensional spaces the k � kl2

-norm of the degrees of freedom is equivalent to the k � kL2
-norm of the cor-

responding functions which itself is equivalent to the natural k � k
H
�1

2
div
ðCÞ

-norm. However, depending on the regularity of the

underlying function the scaling in the mesh size h might be different. But since we only consider discrete functions, they are
sufficiently regular and the scaling in the mesh size h (which does not change at any instance) is the same.

Remark 4.1. For the purpose of well-conditioned systems we use the Gram–Schmidt process to orthonormalize the basis
functions of WN .

The previously defined algorithm identifies the reduced basis space WN such that WN is a good approximation to Mh. In
practice, exponential convergence is observed with respect to N, as the numerical results presented in Section 6 will show.

4.2. Efficiency

Once the reduced basis space is assembled, the goal is to efficiently solve the input–output procedure:
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
.1016/j.jcp.2011.03.023
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Pl
do
Algorithm: RB-offline

Input: A parameter value l and a discrete set of directions D
Output: The Radar Cross Section RCSðJNðlÞ; d̂Þ of the reduced basis approximation

JNðlÞ 2WN for all directions d̂ 2 D
The previous input–output procedure can be in a many-query context, in the framework for an optimization problem or
shape recognition problem, for example. Note that if we do not manage to solve problem (10) efficiently, there is no need for
the reduced basis approximation since the solution could be obtained through a full BEM-approximation using (9). Observe
that solving (9) depends on the dimension N of the approximation space RT0. We therefore define efficiency in the sense that
the solution of (10) should be independent of N .

That the following assumption is satisfied exactly or approximately:

Assumption 4.2 (Affine decomposition). The sesquilinear form a and the linear forms f, s1 can be decomposed into a finite
sum of parameter dependent scalar functions multiplied by parameter-independent forms, i.e.
ease
i:10
aðw;v; kÞ ¼
XMk

m¼1

HmðkÞamðw;vÞ;

f ðv; lÞ ¼
XMf

m¼1

Hm
f ðlÞ � fmðvÞ;

s1ðv; k; d̂Þ ¼ d̂�
XM1
m¼1

Hm
1ðk; d̂ÞsmðvÞ � d̂

 !
;

with

Hm : R ! C; am : RT0 � RT0 ! C

Hm
f : D ! C3; fm : RT0 ! C3

Hm
1 : D ! C; sm : RT0 ! C3:
Remark 4.3. Note that in the case of the parametrized EFIE, this assumption is not obvious. On the contrary, without any
additional tools the assumption is not satisfied exactly, i.e. the simultaneous presence of the variable and the parameter
in the power of the exponential function of the forms
aðJ; Jt ; kÞ ¼ ikZ
Z

C

Z
C

eikjx�yj

4pjx� yj JðxÞ � JtðyÞ �
1

k2 divC;xJðxÞdivC;yJtðyÞ

 �

dxdy;

f ðJt;lÞ ¼ �
Z

C
eikk̂�yp � JtðyÞdy;

s1ðJ; k; d̂Þ ¼ ikZ
4p

d̂�
Z

C
JðxÞeikx�d̂dx� d̂

� �

yields complications. A way to achieve the affine decomposition in an approximative manner is discussed in Section 5.

This particular assumption is motivated by the fact that the forms, which depend on the dimension N of the boundary
element space, can be precomputed for the basis functions of the reduced basis space WN . The slight differences between
scalar and vector quantities is due to the tools used to recover this decomposition and is discussed in details in Section 5.
We therefore postpone the discussion of how to get this decomposition and suppose for now that this assumption holds.

Given WN ¼ spanfniji ¼ 1; . . . ;Ng, for any N P 1, we then pre-assemble in an offline procedure the M corresponding
matrices Am 2 CN;N; Fm; Sm 2 CN;3 to the forms am, fm and sm defined by
Am
i;j ¼ amðnj; niÞ; 1 6 i; j 6 N; 1 6 m 6 Mk;

Fm
i;j ¼ fm

j ðniÞ; 1 6 i 6 N; 1 6 j 6 3; 1 6 m 6 Mf ;

Sm
i;j ¼ sm

j ðniÞ; 1 6 i 6 N; 1 6 j 6 3; 1 6 m 6 M1:
Note that this assembling depends on N , but once the matrices are assembled they are of dimension N � N resp. N � 3, thus
independent on N .

In a similar way we pre-compute quantities related to the residual of the linear system (11), namely the matrices
R1

m;n 2 CN;N; R2
m;n 2 C3;N and Rm;n

3 2 C3;3.
m;n m � n
R1 i;j ¼ ðA n̂jÞ A n̂i; 1 6 i; j 6 N; 1 6 m; n 6 Mk;

R2
m;n
i ¼ ðf mÞ�Ann̂i; 1 6 i 6 N; 1 6 m 6 Mk; 1 6 n 6 Mf ;

Rm;n
3 ¼ ðf mÞ�f n; 1 6 m; n 6 Mf ;
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
.1016/j.jcp.2011.03.023
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where Am 2 CN ;N ; f m 2 CN ;3 and n̂i 2 CN denote the vectorial representation of the sesquilinear forms am(�, �), linear forms
fm(�) and basis functions ni in the standard basis of RT0.

Once this pre-assembling is completed during the online stage of the algorithm, the previously described Input–Output
procedure can be solved in a fast way, as described in Algorithm 2.

Remark 4.4 (Costs). It shall be noted that the notion of complexity is of two ‘‘dimensions’’. The first one concerns the mesh
size of the discretized surface and the corresponding Boundary Element Space. During the Offline algorithm, for solving each
new snapshot, the number of degrees of freedom N of the mesh will be decisive for the computing time. For an efficient
solver one can use the Fast-Multipole technique developed by Greengard and Rokhlin [15] which results in N logðN Þ
operations. On the other hand for large or high dimensional parameter spaces, the search over the train sample N in
Algorithm 1 becomes time limiting and depending linearly on the number of points in the discrete set N. There can be an
implicit connection between those two dimensions through the highest wave number considered in the parameter space,
which dictates a certain fineness of the mesh in order to get an accurate truth solution for all parameter values.

During the Online stage however, the computing time no longer depends on N and solely depends on N, Mk, Mf, M1 and
the number of directions in the set D.
Pl
do
Algorithm: RB-online

Algorithm 2: Online-procedure of the reduced basis method

Input:A parameter value l and a discrete set of directions D
Output: The Radar Cross Section RCSðJNðlÞ; d̂Þ of the reduced basis approximation JNðlÞ 2WN for the given directions

d̂ 2 D
begin
ease
i:1
(i) Assemble the matrix ArbðlÞ 2 CN�N and vector FrbðlÞ 2 CN as

ArbðlÞ ¼
XM

m¼1

HmðlÞAm and FrbðlÞ ¼
XMf

m¼1

FmHm
f ðlÞ:

(ii) Solve the linear system Arb(l)b(l) = Frb(l).

/⁄The reduced basis solution is then given by

JNðlÞ ¼
XN

i¼1

ðbðlÞÞini:

⁄/
(iii) for each d̂ 2 D do

Compute the RCS signal

RCSðJNðlÞ; k; d̂Þ ¼ 10log10 4p js1ðd̂Þj
2

jEincðlÞj2

 !

with s1ðd̂Þ :¼
PN

i¼1

PM1
m¼1biðlÞHm

1ðk; d̂Þd̂� ðsm
i � d̂Þ where sm

i 2 C3 is the i-th row of the matrix Sm.

end
(iv) Compute the error indication:

gðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1ðlÞ � 2g2ðlÞ þ g3ðlÞ

q
max
l2N
kFðlÞkl2

:

with

g1ðlÞ ¼
XMk

m;n¼1

bðlÞHmðlÞ
� �

R1
m;nbðlÞHnðlÞ

g2ðlÞ ¼
XMk

m¼1

XMf

n¼1

Hm
f ðlÞ

� �
R2

m;nbðlÞHnðlÞ

g3ðlÞ ¼
XMf

m;n¼1

Hm
f ðlÞ

� �
Rm;n

3 Hn
f ðlÞ

end
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
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5. Empirical interpolation method

This section is devoted to finding strategies to satisfy the affine assumption approximatively. The Empirical Interpolation
Method (EIM) [3,16,23], also called Magic Points, is frequently used in the framework of reduced basis methods. A similar but
alternative approach is presented in [26] where the interpolation points are chosen in a different manner. We first introduce
the method and show some numerical examples that are essential in our context. In a second part we will generalize the
existing method to better fit the needs in the framework of the parametrized EFIE.

5.1. Empirical interpolation method

Consider a function f : X�D ! C that is smooth enough, i.e. f ð�;lÞ 2 C0ðXÞ for all l 2 D. Note that the parameter do-
main is not necessarily the same as the one for the reduced basis method. When combining the EIM with the reduced basis
method, it also consists of a subset of the parameter space given by the underlying parametrized problem. The EIM provides
a set of parameter values IM ¼ fljgM

j¼1 and basis functions QM ¼ fqjg
M
j¼1 such that the interpolant defined by
Please
doi:10
IMðf Þðx;lÞ :¼
XM

j¼1

ajðlÞqjðxÞ ð13Þ
is an approximation of f(x;l) for all ðx;lÞ 2 X�D and where the coefficients fajðlÞgM
j¼1 are obtained by solving a lower tri-

angular linear system of size M. Indeed, the interpolant can be chosen to be arbitrarily accurate depending on the number of
modes M used. The accuracy is measured in the L1ðX�DÞ-norm. In practice, exponential convergence is observed with re-
spect to the number of modes, see the following section of numerical results of the EIM. The EIM also uses a greedy algorithm
to pick the parameters IM ¼ fljgM

j¼1 and is given in Algorithm 3.
The algorithm EIM uses the module ERROR which is described in Algorithm 4 and computes the next basis function and

interpolation point for a given system of basis functions and interpolation points.
Indeed, for any new parameter value l the parameter dependent coefficients fajðlÞgM

j¼1 are obtained by solving the fol-
lowing linear system
XM

j¼1

BM
ij ajðlÞ ¼ f ðxi; lÞ; 1 6 i 6 M;
where the interpolation matrix BM is defined by BM
ij ¼ qjðxiÞ and where TM ¼ fxigM

j¼1 are the interpolation points provided by
the EIM.
Algorithm: EIM

Algorithm 3: The Empirical Interpolation Method

Input: Function f, X, D, M
/⁄f : X�D! C: function to be interpolated⁄/
/⁄M: Maximal length of expansion⁄/
Output: Parameter samples IM ¼ fljgM

j¼1, interpolation points TM ¼ fxjgM
j¼1,

basis functions QM ¼ fqjg
M
j¼1 and interpolation error Err

begin
Set N � D, a finite dimensional point-set and fine enough

B0 ¼ Q0 ¼ I0 ¼ T0 ¼ ;
for m = 1,. . .,M do

/⁄Get m-th basis function and m-th interpolation point⁄/
ðErrm; qm;lm;xmÞ  ERRORðTm�1;Qm�1;m� 1Þ
Set Qm ¼ Qm�1 [ fqmg, Im ¼ Im�1 [ flmg, Tm ¼ Tm�1 [ fxmg

end
ðErr; �Þ  ERRORðTM ;QM;MÞ

end
Remark 5.1. Note that the sample space from the Empirical Interpolation Method IM is not to be mistaken for the sample
space SM of the reduced basis method. The former one is linked to a good approximation of the interpolant defined by (13).
The latter one defines the reduced basis and therefore also accounts for phenomena arising from the physical problem.
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
.1016/j.jcp.2011.03.023
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In order to satisfy the affine decomposition, Assumption 4.2, we use the Empirical Interpolation Method, as pointed out in
Remark 4.3. The following examples show how this method is involved to used the affine decomposition assumption in the
framework of the parametrized EFIE.

Example 5.2 (Kernel function). The kernel function Gk is first split into a parameter independent singular part and a
parameter dependent non-singular part
Please
doi:10
Gðr; kÞ ¼ 1
4pr
þ Gnsðr; kÞ with Gnsðr; kÞ ¼ eikr � 1

4pr
:

This splitting is due to the underlying boundary element discretization which requires different numerical integration for the
sesquilinear forms of those two parts. Next, the Empirical Interpolation Method is used to construct an interpolant
IMðGnsÞðr; kÞ :¼
XMg

m¼1

ag
mðkÞqg

mðrÞ:
Algorithm: ERROR

Algorithm 4: The ERROR module
Input: Tm;Qm;m
Output: Error of interpolation Err, next basis function ~q, parameter value ~l and point ~x that yield the maximum.

begin
Define the interpolation matrix by
Bm
ij ¼ qjðxiÞ; 1 6 i; j 6 m:

for each l 2N do
Solve the linear system

Xm

j¼1

Bm
ij fjðlÞ ¼ f ðxi; lÞ; 1 6 i 6 m;xi 2 Tm:

Compute the interpolant defined by

Imðf Þðx; lÞ ¼
Xm

j¼1

fjðlÞqjðxÞ; qj 2 Qm:

Compute the error function

eðx; lÞ ¼ f ðx;lÞ � Imðf Þðx; lÞ

and the interpolation error

gðlÞ ¼ keð�;lÞkL1ðXÞ:

end
Set ~l ¼ argmaxl2NgðlÞ, ~x ¼ argsupx2Xjeðx; ~lÞj, ~q ¼ eð�; ~lÞ=eð~x; ~lÞ and Err ¼ gð~lÞ

end
Replacing Gns(r;k) by its interpolant IMðGnsÞðr; kÞ in the sesquilinear form a yields
aðJ; Jt; kÞ 
 ikZ
4p

Z
C

Z
C

1
r

JðxÞ � JtðyÞdxdy � iZ
4pk

Z
C

Z
C

1
r

divC;xJðxÞdivC;yJtðyÞdxdy þ
XMg

m¼1

ikZag
mðkÞ

Z
C

Z
C

qg
mðrÞJðxÞ

� JtðyÞdxdy �
XMg

m¼1

iZ
k

ag
mðkÞ

Z
C

Z
C

qg
mðrÞdivC;xJðxÞdivC;yJtðyÞdxdy;
where r = jx � yj. Since the interpolant can be constructed to any precision (point-wise over the spatial and parameter do-
mains), it is reasonable to use the approximate sesquilinear form. We define
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
.1016/j.jcp.2011.03.023
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Please
doi:10
HmðkÞ ¼

ikZ
4p if m ¼ 1;

� iZ
4pk if m ¼ 2;

ikZag
mðkÞ if 3 6 m 6 2þMg ;

� iZ
k ag

mðkÞ if 3þMg 6 m 6 2þ 2Mg

8>>>><
>>>>:
for all 1 6m 6Mk = 2Mg + 2. In the same manner we define the parameter independent forms by
amðw;vÞ ¼

R
C

R
C

1
r wðxÞ � vðyÞdxdy if m ¼ 1;R

C

R
C

1
r divC;xwðxÞdivC;yvðyÞdxdy if m ¼ 2;R

C

R
C qg

mðrÞwðxÞ � vðyÞdxdy if 3 6 m 6 2þMg ;R
C

R
C qg

mðrÞdivC;xwðxÞdivC;yvðyÞdxdy if 3þMg 6 m 6 2þ 2Mg :

8>>>>><
>>>>>:
Example 5.3 (Trace of incident plane wave). The second example deals with the trace of the incident plane wave
Eincðx;lÞ ¼ �peikk̂�x onto C. Observe that since we integrate Einc against a tangential test function Jt we do not have to project
Einc onto the surface C. Thus we can write
f ðJt ;lÞ ¼ �p �
Z

C
eikk̂�yJtðyÞdy
and observe that the integral still depends on the parameters k and k̂. We therefore apply the Empirical Interpolation Meth-
od to the scalar function feðx; k; k̂Þ ¼ eikk̂�x which results in a set of basis functions fqf

mg
Mf
m¼1 that defines the interpolant
IMðfeÞðx; k; k̂Þ ¼
XMf

m¼1

af
mðk; k̂Þqf

mðxÞ:
Again, the coefficients faf
mðk; k̂Þg

Mf
m¼1 can be obtained by solving a linear system of size Mf for any new parameter values. Fi-

nally we can write
f ðJt ;lÞ 
 �
XMf

m¼1

af
mðk; k̂Þp �

Z
C

qf
mðyÞJtðyÞdy:
We finally define Hm
f ðlÞ ¼ �af

mðk; k̂Þp and fm ¼
R

C qf
mðyÞJtðyÞdy.
Example 5.4 (Radar Cross Section). The third example treats the non-affine character of the functional
s1ðJ; k; d̂Þ ¼ ikZ
4p

d̂�
Z

C
JðxÞeikx�d̂dx� d̂

� �
needed to compute the RCS-signature in a given direction d̂ for a current J. The non-affine behavior lies in the function eikx�d̂.
We therefore apply the EIM to the function feðx; k; d̂Þ ¼ eikx�d̂. Observe that this is the same function as in the previous exam-
ple, but for a different parameter domain. We therefore compute the interpolant twice to keep the number of necessary
modes M as low as possible. Again, the EIM results in a set of basis functions fq1mg

M1
m¼1 and efficiently computable coefficients

fa1m ðk; k̂Þg
Mf
m¼1 for each new parameter values. We can then write
s1ðJ; k; d̂Þ 
 d̂�
XM1
m¼1

ikZ
4p

a1m ðk; d̂Þ
Z

C
JðxÞq1m ðxÞdx

 !
� d̂

 !
and we define Hm
1ðk; d̂Þ ¼ ikZ

4p a1m ðk; d̂Þ and sm ¼
R

C JðxÞq1m ðxÞdx.
5.1.1. Numerical results
Let us test the approximation and convergence properties of the Empirical Interpolation Method. We will consider four

test cases given by:
cite thi
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Fig. 3. Two different views on the surface C used for the test cases (ii), (iii) and (iv).
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Fig. 4. Relative error in the test case (i) for different values of kmax depending on the length M of the expansion (top) and the corresponding picked
parameter values (bottom).
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We recall that the wave direction k̂ is parametrized by the spherical coordinates (h,u) 2 [0,p] � [0,2p). For the previous
three test cases, we use a cavity as illustrated in Fig. 3 as surface C. It is an open box of length 1 � 0.25 � 0.25 m3 centered at
the origin and open towards the positive x-axis.

In the convergence plots we use the following relative L1-norm over X�D:
Please
doi:10
kf � IMðf ÞkL1ðX�DÞ

kfkL1ðX�DÞ
:

Fig. 4 shows both the error behavior depending on M and the parameter range for three different values of kmax for the test
case (i). Note that the number of basis functions needed to achieve some given tolerance increases linearly with kmax. As is
expected the distribution of the parameter value resembles, at least visually, the usual interpolation point-sets and, up to a
linear stretch, seems to be similar for all values of kmax.

In Fig. 5, we present the same plots as above but for test case (ii) and varying fixed wave numbers k. Again, observe the
linear increase, with respect to k, of the recovered basis functions to achieve a certain tolerance and a similar parameter dis-
tribution for different wave numbers.

Figs. 6 and 7 illustrate the error behavior and the distribution of the picked parameters for cases (iii) and (iv). Similar
observations as above can be made. Note that in the test case (iii) the parameter values are gathered around the value
h = p/2 which corresponds to the equator of the sphere. Due to the spherical coordinates the parameter distribution is uni-
form on the sphere but not in the parameter domain. Concerning test case (iv), we observe that the most parameter values
cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
.1016/j.jcp.2011.03.023
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are picked around k = 25. This is due to the fact that the function under consideration is most oscillatory for the highest val-
ues of k. The greedy algorithm selects more points around high values of k in order to resolve the oscillations as expected.
5.2. Elementwise Empirical Interpolation Method (EEIM)

In the previous section, we observed that the dimension of the reduced basis space scales with the dimension of the
parameter domain D and its volume. The expansion can become too large, i.e. large enough to significantly increase the com-
putation time of the online procedure (Algorithm 2) which depends on Mk, Mf and MR. This can increase the online compu-
tation time to be in the order of a direct boundary element computation. To overcome we propose an adaptive approach by
splitting the parameter domain D into several subelements on which we approximate the subsequent function individually
Please cite this article in press as: M. Fares et al., The reduced basis method for the electric field integral equation, J. Comput. Phys. (2011),
doi:10.1016/j.jcp.2011.03.023
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by a different expansion of the form (13). It is similar in spirit to an hp-interpolant where p stands for the number of added
modes per (parameter) subelement (indexed M) and h represents the diameter of the subelements. Observe that no inter-
element continuity in the parameter domain is required.

The following approach is also discussed in further details in [12] where additionally a comparison to a similar approach,
inspired by the techniques developed in [11], is given.

The overall strategy is the following. We first run the EIM to pick M parameter values I1
M , integration points T1

M and basis
functions Q1

M which uniquely defines the interpolant on D using M terms. Next, if the interpolation error does not satisfy a
certain given error tolerance we compute the gravity center of the point-set I1

M . The domain D � Rd is then split into 2d rect-
angular quadrilateral subelements Di having the gravity center as common node. Otherwise if the tolerance is achieved, the
previous computed expansion is final and remains unchanged. Finally, we proceed recursively on the newly created subel-
ements. On each of them M new basis functions are computed following the greedy algorithm before we check the error tol-
erance etc. The algorithm is schematically described in Algorithm 5.
5.2.1. Numerical results
We present numerical test corresponding to the test cases (i) and (iv) of Section 5.1.1.
Fig. 8 illustrates the balance between the maximum length of the approximations M versus the number of elements

needed to satisfy a certain given relative error tolerance for the test case (i). The error is measured in the relative L1-norm
over the spatial domain X and the parameter domain D. We also show the different accuracies with respect to the length of
the interpolation series M for different resulting subdivisions of the parameter domain.

In a similar manner we plot the quantities in Fig. 9, but for test case (iv). Observe the algebraic relation between the re-
quired number of elements and the length of the expansion M.
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Fig. 10 shows the picked parameter values and the corresponding subdivision for the test case (iv). The interpolant sat-
isfies in all cases a relative error tolerance of 10�12, but achieved with different maximum lengths of the expansions. The
corresponding values of the lengths are M = 218, 151, 106, 74.
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. 9. The length of the EEIM expansion M versus the number of elements needed for test case (iv) and three different error tolerances (left). Accuracy of
EEIM with respect of the length of the EEIM expansion M for different numbers of resulting elements (right).
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Fig. 10. Picked parameter values and subdivision of the parameter domain for different levels of refinements. The empirical interpolation satisfies a relative
error tolerance of 10�12 for all four cases but with different lengths of the series per element, i.e. M = 218, 151, 106, 74.
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6. Numerical tests of the reduced basis method

Finally, having all these tools to apply the reduced basis algorithm, we present some numerical examples.
Pl
do
Algorithm: Refine

Algorithm 6: The Refine algorithm
Input: D; I
/⁄ D: parameter domain ⁄/
/⁄ I: parameter samples in domain D ⁄/
Output: A partition of D that consists of 2d sub elements ðD1; . . . ;D2d Þ
begin

Compute the gravity center ~x ¼ 1
cardðIÞ

P
x2Ix

The subelements fDig2d

i¼1 is the unique partition of D consisting of rectangular quadrilaterals have as one common
node ~x
end
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First, we consider the four following test cases:
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As scatterer, we use the geometry already introduced in Section 5.1.1 and illustrated in Fig. 3. The mesh used for the
underlying truth approximation consists of 2236 elements/triangles with 3338 degrees of freedom (we shall present later
an example with a more complex scatterer). The mesh-size is chosen in such a way that for the highest wavenumber con-
sidered, namely k = 25 m�1, we still have a sufficient resolution of the oscillations, i.e. 7 degrees of freedom per wavelength
which yields an error of the truth solution (with respect to the exact solution) in the order of 10�1. Note that this error is
magnitudes larger than the errors arising form approximating the truth solutions by the reduced basis method in the frame-
work of this study. The fact that the errors between the truth solution and the reduced basis approximation that go below
10�1 are of no practical interest, but remains interesting and important to analyze in a mathematical framework. The output
functional is the RCS-signal given by the direction d̂ parametrized in spherical coordinates by the angles hrcs 2 [0,p] and
urcs = 0.

As underlying BEM-solver we use the code Cerfacs Electromagnetic Solver Code (CESC) developed at CERFACS, Toulouse.
It solves the linear system using a LU-factorization, then solves for different right hand sides.
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In all the test cases, we study the relative error
Fig. 13.
Elemen

Please
doi:10
maxl2NkJhðlÞ � JNðlÞkL2ðXÞ

maxl2NkJhðlÞkL2ðXÞ
; ð14Þ
with respect of the increasing dimension N of the reduced basis space. Fig. 11 shows the error behavior for the test cases (i)
and (ii) for three different values of the wavenumber k. In Fig. 12 the same quantity is illustrated for test cases (iii) and (iv).
Observe the exponential convergence in all four cases. We also indicated the decrease of the singular values which repre-
sents the approximation properties of the best possible reduced basis in the sense of the L2(X) � L1(N)-norm. Observe that
the greedy-type of assembling the reduced basis is sub-optimal. However, it comes with a minimal assembling cost which is
the true advantage of the greedy-algorithm. In addition, the error indicator has also an impact on the quality of the reduced
basis. Therefore a more mathematical rigorous a posteriori estimate could also yield to a better performance of the reduced
basis. However, this comment is of speculative nature.

Further we study CPU time of the online procedure and also compare it to solving the problems for each parameter value.
We are focussing on test case (iv) where the RCS signal should be computed for all directions d̂ parametrized in spherical
coordinates by the angles h 2 [0,p] and u = 0.

We present the result of the reduced basis method with three different Empirical Interpolation Methods, i.e. we use three
different types of EEIM interpolants. In the following table we present the number of EIM elements that are used for each
interpolation for all three versions.
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In Fig. 13 we compare the average time of computing the RCS-signal using the different versions of the reduced basis
method compared to the average computing time of the Boundary Element Method. For both methods the average comput-
ing time is taken over a sample set of parameter values. Regarding the Boundary Element Method we only compute the LU
factorization once for all the parameter values having the same wavenumber, then we solve for the different right hand sides.
We plot the speed-up of the reduced basis method in function of the dimension of the Reduced Basis. Observe that the speed-
up can be considerably increased using an EEIM interpolant.

In the subplots of Fig. 14 we plot the absolute time for each parameter value (averaged over the whole set of parameter
values) to compute the RCS signal in function of the dimension of the reduced basis. We subdivide the total computing time
into the three most time consuming factors: The LU-factorization of the linear system (10), the computation of the residual
error (12) and the computation of the RCS-signal. We not only observe that the total computing time is reduced while involv-
ing several EIM elements but also that the different fractions of computing times are slightly more equally distributed. How-
ever, the error tolerance of the EIM resp. EEIM is fixed in advance to 10�8. Therefore one could further reduce the online
undary

2011),
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computing time by adapting the precision of the EIM resp. EEIM to the target error tolerance of the RBM. This would have the
highest impact in the region with low values of N and thus lead to a higher speedup.

In Fig. 15 we plot the exact and approximated RCS-signal by the reduced basis method for test case (iii) with k = 23.8 and
for three different dimensions of the reduced basis. We consider all directions d̂ parametrized in spherical coordinates by the
angles hrcs 2 [0,p] and /rcs = 0. In Fig. 16 we plot the RCS-signal corresponding to the first five reduced basis functions for
the test case (iii).

Fig. 17 shows two different kinds of plots, (a) and (b), for the RCS-signal depending on the angle hrcs of the direction d̂ and
the wave number k. We can observe that for some values of k, the RCS is changing fast in its neighbourhood. Fig. 18 provides
a zoom of the region between k = 12.5 and k = 13.5 and we can detect a bifurcation of a branch.
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Fig. 14. The time of the subtasks of the online procedure of three different versions of the reduced basis method for different dimensions of the reduced
basis. The time (measured in seconds) corresponds to the average computing time of the RCS-signal for a parameter value for the test example (iv).
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Fig. 15. Exact and approximated RCS-signal by the reduced basis method for test case (iii) with k = 23.8 and for three different dimensions of the reduced
basis.
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Fig. 16. RCS-signal corresponding to the first five reduced basis functions for test case (iii).

Fig. 17. Two different plots of the RCS-signal in function of the wave number k 2 [1,25] for test case (iii).

Fig. 18. Two different plots of a zoom of the RCS-signal in function of the wave number k 2 [12.5,13.5] for test case (iii).
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Fig. 19. Two different views of the scatterer used for the reduced basis test case (v).
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Finally, in test (v), we study a more complicated scatterer illustrated in Fig. 19 with a mesh consisting of 120620 degrees of
freedom. We analyze the case where the wave number is the sole active parameter:
P
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Parameter
es et al., The reduced basis method for th
D

e electric field integral equation, J. Com
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(v)
 k
 k 2 [1,kn]
 h = p/4, u = 0
We construct the reduced bases for the five different parameter domains [1,10n] for n = 1, . . . , 5. In Fig. 20 we illustrate
the error between the truth solution and the reduced basis approximation (14) for all five different parameter domains and
also compare it with the error indicator (12) (filled symbols). Observe that using the error indicator (12) seems to be justified,
although not being optimal. Rigorous a posteriori estimates would further improve the estimation. It is hard to analyze the
dependence of the dimension of the reduced basis N required for achieving a certain error tolerance with respect to kn. The
dimension depends in a sensible way on whether resonances occur or not. This depends on the geometry, the angle of the
incident wave and of course the domain of wave numbers considered. There is no a priori theory which predicts the dimen-
sion of the reduced basis, it can only be empirically determined.

7. Conclusions

We presented an efficient algorithm to solve parametrized scattering problems in the form of the electric field integral
equation (EFIE). The present algorithm consists of two steps: assembling the reduced basis, comparable to building a data-
base, and a fast evaluation of the database in a many-query context. The advantage of such an approach is that, once the
reduced basis resp. database is build, the evaluation of an output functional of the solution is independent of the dimension
of the underlying discretization for any new parameter value. The parameters of the problem include the wave number, an-
gle of the incident plane wave and its polarization.
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For scatterers with volumes we are aware of the fact that spurious modes may interfere since we are using the EFIE. How-
ever, excluding them from the training sample N avoids that the algorithm is at any point not well posed. We justify the use
of the EFIE by the sake of its simplicity in the beginning of this project. However, there is no reason why the combination of
the reduced basis method combined with any other standard solver for the parametrized scattering problem should not
work. In particular, we will work on the Combined Field Integral Equation (CFIE) in near future.

The use of error indicators is important in the greedy algorithm to assemble the reduced basis. Therefore the quality of the
estimate has a direct influence on the approximation properties of the reduced basis. It is ongoing work to develop mathe-
matically rigorous efficient and reliable a posteriori estimates for the EFIE.
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