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The Dual Role of Convection in 3D
Navier-Stokes Equations

Thomas Y. Houa, Zuoqiang Shib, Shu Wangc

Abstract

We investigate the dual role of convection on the large time behavior of the
3D incompressible Navier-Stokes equations. On the one hand, convection is
responsible for generating small scales dynamically. On the other hand, con-
vection may play a stabilizing role in potentially depleting nonlinear vortex
stretching for certain flow geometry. Our study is centered around a 3D model
that was recently proposed by Hou and Lei in [23] for axisymmetric 3D in-
compressible Navier-Stokes equations with swirl. This model is derived by
neglecting the convection term from the reformulated Navier-Stokes equations
and shares many properties with the 3D incompressible Navier-Stokes equa-
tions. In this paper, we review some of the recent progress instudying the
singularity formation of this 3D model and how convection may destroy the
mechanism that leads to singularity formation in the 3D model.

Key words: Finite time singularities, nonlinear nonlocal system, incom-
pressible Navier-Stokes equations.

1.1 Introduction

Whether the 3D incompressible Navier-Stokes equations can develop a finite
time singularity from smooth initial data with finite energyis one of the seven
Millennium problems posted by the Clay Mathematical Institute [16]. This
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problem is challenging because the vortex stretching nonlinearity is super-
critical for the 3D Navier-Stokes equation. Conventional functional analysis
based on energy type estimates fails to provide a definite answer to this prob-
lem. Global regularity results are obtained only under certain smallness as-
sumptions on the initial data or the solution itself. Due to the incompressibility
condition, the convection term seems to be neutrally stableif one tries to es-
timate theLp (1 < p ≤ ∞) norm of the vorticity field. As a result, the main
effort has been to use the diffusion term to control the nonlinear vortex stretch-
ing term by diffusion without making use of the convection term explicitly.

In [23], Hou and Lei investigated the role of convection by constructing a
new 3D model for axisymmetric 3D incompressible Navier-Stokes equations
with swirl. The 3D model is derived based on the reformulatedNavier-Stokes
equation given below
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whereu1 = uθ/r, ω1 = ω
θ/r, ψ1 = ψ

θ/r. Hereuθ, ωθ ψθ are the angular veloc-
ity, angular vorticity and angular stream-function, respectively. The radial ve-
locity ur and the axial velocityuz are given byur = −r(ψ1)z anduz = (r2ψ1)r/r.
The 3D model of Hou-Lei is obtained by simply dropping the convection term
in the reformulated Navier-Stokes equations (1.1)–(1.3),which is given by the
following nonlinear nonlocal system
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Note that (1.4)–(1.6) is already a closed system. This modelpreserves al-
most all the properties of the full 3D Navier-Stokes equations, including the
energy identity for smooth solutions of the 3D model, the non-blowup crite-
rion of Beale-Kato-Majda type [1], the non-blowup criterion of Prodi-Serrin
type [34, 35], and the partial regularity result [24] which is an analogue of the
well-known Caffarelli-Kohn-Nirenberg theory [2] for the full Navier-Stokes
equations.

One of the main findings of [23] is that the 3D model (1.4)–(1.6) has a very
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different behavior from that of the full Navier-Stokes equations although it
shares many properties with those of the Navier-Stokes equations. In [23], the
authors presented numerical evidence which supports the notion that the 3D
model may develop a potential finite time singularity. However, the Navier-
Stokes equations with the same initial data seem to have a completely different
behavior.

In a recent paper [26], we rigorously proved the finite time singularity for-
mation of this 3D model for a class of initial boundary value problems with
smooth initial data of finite energy. The analysis of the finite time singularity
for the 3D model was rather subtle. Currently, there is no systematic method
of analysis available to study singularity formation of a nonlinear nonlocal
system. In [26], we introduced an effective method of analysis to study singu-
larity formation of this nonlinear nonlocal multi-dimensional system. The ini-
tial boundary value problem considered in [26] uses a mixed Dirichlet Robin
boundary condition. The local well-posedness of this mixedinitial boundary
problem is nontrivial. In this paper, we provide a rigorous proof of the local
well-posedness of the 3D model with this mixed Dirichlet Robin boundary
problem.

We remark that formation of singularities for various modelequations for
the 3D Euler equations or the surface quasi-geostrophic equation has been in-
vestigated by Constantin-Lax-Majda [9], Constantin [5], DeGregorio [12, 13],
Cordoba-Cordoba-Fontelos [8], Chae-Cordoba-Cordoba-Fontelos [4], and Li-
Rodrigo [30]. In a recent paper related to the present one, Hou, Li, Shi, Wang
and Yu [25] have proved the finite time singularity of a one-dimensional non-
linear nonlocal system:

ut = 2uv, vt = H(u2), (1.7)

whereH is the Hilbert transform. This is a simplified system of the original
3D model along the symmetry axis. Herev plays the same role asψz. The sin-
gularity of this nonlocal system is remarkably similar to that of the 3D model.

The work of Hou and Lei [23] was motivated by the recent study of Hou and
Li in [22], where the authors studied the stabilizing effect of convection via a
new 1D model. They proved dynamic stability of this 1D model by exploit-
ing the stabilizing effect of convection and constructing a Lyapunov function.
A surprising result from their study is that there is a beautiful cancellation
between the convection term and the nonlinear stretching term when one con-
structs an appropriate Lyapunov function. This Lyapunov estimate gives rise to
a global pointwise estimate for the derivatives of the vorticity in their model.

We would like to emphasize that the study of [22, 23] is based on a reduced
model for certain flow geometry. It is premature to conclude that the convection
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term could lead to depletion of singularity of the Navier-Stokes equations in
general. Convection term may act as a destabilizing term fora different flow
geometry. A main message from this line of study is that the convection term
carries important physical information. We need to take theconvection term
into consideration in an essential way in our analysis of theNavier-Stokes
equations.

The rest of the paper is organized as follows. In Section 2, wediscuss the role
of convection from the Lagrangian perspective and present some numerical
evidence that the local geometric regularity of the vortex lines may deplete the
nonlinear vortex stretching dynamically. In Section 3, we investigate the role of
convection by studying the potential singular behavior of the 3D model which
neglects convection in the reformulated Navier-Stokes equation. We present
some theoretical results on finite time singularity formation of the 3D model
in Section 4. Finally we present the analysis of the local well-posedness of the
3D model with the mixed Dirichlet Robin boundary condition in Section 5.

1.2 The role of convection from the Lagrangian perspective

Due to the supercritical nature of the nonlinearity of the 3DNavier-Stokes
equations, the 3D Navier-Stokes equations with large initial data are convec-
tion dominated. Thus the understanding of whether the corresponding 3D Eu-
ler equations would develop a finite time blowup could shed useful light on the
global regularity of the Navier-Stokes equations.

We consider the 3D Euler equations in the vorticity form. We note that we
can rewrite the vorticity equation in a commutator form (or aLie derivative) as
follows:

ωt + (u · ∇)ω − (ω · ∇)u = 0. (1.8)

Through this commutator formulation, we can see that the convection term
may have the potential to dynamically cancel or weaken the vortex stretching
term under certain geometric regularity conditions.

Another way to realize the importance of convection is to usethe Lagrangian
formulation of the vorticity equation. When we consider the two terms to-
gether, we preserve the Lagrangian structure of the solution [32]:

ω(X(α, t), t) = Xα(α, t)ω0(α), (1.9)

whereXα =
∂X
∂α

andX(α, t) is the flow map:

dX
dt

(α, t) = u(X(α, t), t), X(α,0) = α. (1.10)
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We believe that (1.9) is an important signature of the 3D incompressible Euler
equation. An immediate consequence of (1.9) is that vorticity increases in time
only through the dynamic deformation of the Lagrangian flow map, which
is volume preserving, i.e. det(Xα(α, t)) ≡ 1. Thus, as vorticity increases dy-
namically, the parallelepiped spanned by the three vectors, (Xα1,Xα2,Xα3), will
experience severe deformation and become flattened dynamically. Such defor-
mation tends to weaken the nonlinearity of vortex stretching dynamically.

1.2.1 A Brief Review

In this subsection, we give a brief review of some of the theoretical and com-
putational studies of the 3D Euler equation. Due to the formal quadratic non-
linearity in vortex stretching, classical solutions of the3D Euler equation are
known to exist only for a short time [32]. One of the most well-known non-
blowup results on the 3D Euler equations is due to Beale-Kato-Majda [1] who
showed that the solution of the 3D Euler equations blows up atT if and only if
∫ T

0
‖ω‖∞(t) dt = ∞, whereω is vorticity.

There have been some interesting recent theoretical developments. In partic-
ular, Constantin-Fefferman-Majda [6] showed that local geometric regularity
of the unit vorticity vector can lead to depletion of the vortex stretching. De-
noteξ = ω/|ω| as the unit vorticity vector andu the velocity field. Roughly
speaking, Constantin-Fefferman-Majda proved that if (1)‖u‖∞ is bounded in
a O(1) region containing the maximum vorticity, and (2)

∫ t

0
‖∇ξ‖2∞dτ is uni-

formly bounded fort < T, then the solution of the 3D Euler equations remains
regular up tot = T.

There has been considerable effort put into computing a finite time singu-
larity of the 3D Euler equation. The finite time collapse of two anti-parallel
vortex tubes by R. Kerr [28, 29] has received a lot of attention. With resolution
of order 512×256×192, his computations showed that the maximum vorticity
blows up likeO((T − t)−1) with T = 18.9. In his subsequent paper [29], Kerr
applied a high wave number filter to the data obtained in his original com-
putations to “remove the noise that masked the structures inearlier graphics”
presented in [28]. The singularity time was revised toT = 18.7. Kerr’s blowup
scenario is consistent with the Beale-Kato-Majda non-blowup criterion [1] and
the Constantin-Fefferman-Majda non-blowup criterion [6]. It is worth noting
that there is still a considerable gap between the predictedsingularity time
T = 18.7 and the final timet = 17 of Kerr’s original computations which he
used as the primary evidence for the finite time singularity.
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1.2.2 The local non-blowup criteria of Deng-Hou-Yu [10, 11]

Motivated by the result of [6], Deng, Hou and Yu [10] have obtained a sharper
non-blowup condition which uses a Lagrangian approach and the very local-
ized information of the vortex lines. More specifically, they assume that at each
time t there exists some vortex line segmentLt on which the local maximum
vorticity is comparable to the global maximum vorticity. Further, they denote
L(t) as the arclength ofLt, n the unit normal vector ofLt, andκ the curva-
ture of Lt. If (1) maxLt (|u · ξ| + |u · n|) ≤ CU(T − t)−A with A < 1, and (2)
CL(T − t)B ≤ L(t) ≤ C0/maxLt (|κ|, |∇ · ξ|) for 0 ≤ t < T, then they show that
the solution of the 3D Euler equations remains regular up tot = T provided
thatA+ B < 1.

In Kerr’s computations, the first condition of Deng-Hou-Yu’s non-blowup
criterion is satisfied withA = 1/2 if we use‖u‖∞ ≤ C(T − t)−1/2 as alleged in
[29]. Kerr’s computations suggested thatκ and∇ · ξ are bounded byO((T −
t)−1/2) in the inner region of size (T−t)1/2×(T−t)1/2×(T−t) [29]. Moreover, the
length of the vortex tube in the inner region is of order (T−t)1/2. If we choose a
vortex line segment of length (T−t)1/2 (i.e.B = 1/2), then the second condition
is satisfied. However, this would violate the conditionA+ B < 1. Thus Kerr’s
computations fall into the critical case of the non-blowup criterion of [10]. In
a subsequent paper [11], Deng-Hou-Yu improved the non-blowup condition to
include the critical caseA + B = 1, with some additional constraint on the
scaling constants.

We remark that in a recent paper [27], Hou and Shi introduced adifferent
method of analysis to study the non-blowup criterion of the 3D Euler and the
SQG model. By performing estimates on the integral of the absolute value of
vorticity along a local vortex line segment, they established a relatively sharp
dynamic growth estimate of maximum vorticity under some mild assumptions
on the local geometric regularity of the vorticity vector. Under some additional
assumption on the vorticity field, which seems to be consistent with the com-
putational results of [19], they proved that the maximum vorticity can not grow
faster than double exponential in time. This analysis extends to some extent the
earlier results by Cordoba-Fefferman [7] and Deng-Hou-Yu [10, 11].

1.2.3 Computing potentially singular solutions using
pseudo-spectral methods

It is an extremely challenging task to compute a potential Euler singularity nu-
merically. First of all, it requires a tremendous amount of numerical resolution
in order to capture the nearly singular behavior of the Eulerequations. Sec-
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ondly, one must perform a careful convergence study. It is risky to interpret the
blowup of an under-resolved computation as evidence of finite time singular-
ities for the 3D Euler equations. Thirdly, we need to validate the asymptotic
blowup rate, i.e. is the blowup rate‖ω‖L∞ ≈ C

(T−t)α asymptotically valid as
t → T? If a numerical solution is well resolved only up toT0 and there is still
anO(1) gap betweenT0 and the predicted singularity timeT, then one can not
apply the Beale-Kato-Majda criterion [1] to this extrapolated singularity since
the most significant contribution to

∫ T

0
‖ω(t)‖L∞dt comes from the time interval

[T0, T]. But ironically there is no accuracy in the extrapolated solution in this
time interval if (T − T0) = O(1). Finally, the blowup rate of the numerical so-
lution must be consistent with other non-blowup criteria [6, 10, 11]. Guidance
from analysis is clearly needed.

In [19], Hou and Li performed high resolution computations of the 3D Euler
equations using the two-antiparallel vortex tubes initialdata. They used the
same initial condition whose analytic formula was given by [28]. They used
two different pseudo-spectral methods. The first pseudo-spectral method used
the standard 2/3 de-aliasing rule to remove the aliasing error. For the second
pseudo-spectral method, they used a novel 36th order Fourier smoothing to
remove the aliasing error. In order to perform a careful resolution study, they
used a sequence of resolutions: 768× 512× 1536, 1024× 768× 2048 and
1536× 1024× 3072 in their computations. They computed the solution up to
t = 19, beyond the alleged singularity timeT = 18.7 by Kerr [29].

We first illustrate the dynamic evolution of the vortex tubes. Figure 1.2 de-
scribes the isosurface of the 3D vortex tubes att = 0 andt = 6, respectively.
As we can see, the two initial vortex tubes are very smooth andrelatively sym-
metric. As time evolves, the two vortex tubes approach each other and become
flattened dynamically. By timet = 6 there is already a significant flattening
near the center of the tubes. In Figure 1.3 we plot the local 3Dvortex structure
of the upper vortex tube att = 17. By this time the vortex tube has turned into a
thin vortex sheet with rapidly decreasing thickness. We observe that the vortex
lines become relatively straight and the vortex sheet rollsup near the left edge
of the sheet.

We now perform a convergence study for the two numerical methods using a
sequence of resolutions. For the Fourier smoothing method,we use the resolu-
tions 768×512×1536, 1024×768×2048, and 1536×1024×3072, respectively,
whereas the 2/3 de-aliasing method uses the resolutions 512× 384× 1024,
768× 512× 1536 and 1024× 768× 2048, respectively.

In Figure 1.1 we compare the Fourier spectra of the energy obtained by us-
ing the 2/3 de-aliasing method with those obtained by the Fourier smoothing
method. For a fixed resolution 1024×768×2048, the Fourier spectra obtained
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Figure 1.1 The energy spectra versus wave numbers. The dashed lines and
dashed-dotted lines are the energy spectra with the resolution 1024× 768×
2048 using the 2/3 de-aliasing rule and Fourier smoothing, respectively. The
times for the spectra lines are att = 15,16, 17,18,19, respectively.

by the Fourier smoothing method retain more effective Fourier modes than
those obtained by the 2/3 de-aliasing method and does not give the spurious
oscillations in the Fourier spectra. In comparison, the Fourier spectra obtained
by the 2/3 de-aliasing method produce some spurious oscillations near the 2/3
cut-off point. It is important to emphasize that the Fourier smoothing method
conserves the total energy extremely well. More studies including the conver-
gence of the enstrophy spectra can be found in [19, 20, 21].

To gain more understanding of the nature of the dynamic growth in vorticity,
we examine the degree of nonlinearity in the vortex stretching term. In Figure
1.4 we plot the quantity‖ξ · ∇u · ω‖∞ as a function of time. If the maximum
vorticity indeed blew up likeO((T − t)−1), as alleged in [28], this quantity
should have grown quadratically as a function of maximum vorticity. We find
that there is tremendous cancellation in this vortex stretching term. Its growth
rate is bounded byC‖~ω‖∞ log(‖~ω‖∞), see Figure 1.4. It is easy to show that if
‖ξ · ∇u · ω‖∞ ≤ C‖~ω‖∞ log(‖~ω‖∞), then the maximum vorticity can not grow
faster than doubly exponential in time.

In the right plot of Figure 1.4, we plot the double logarithm of the maximum
vorticity as a function of time. We observe that the maximum vorticity indeed
does not grow faster than doubly exponential in time. We havealso examined
the growth rate of maximum vorticity by extracting the data from Kerr’s paper
[28]. We find that log(log(‖ω‖∞)) basically scales linearly with respect tot
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Figure 1.2 The 3D view of the vortex tube fort = 0 andt = 6. The tube is the
isosurface at 60% of the maximum vorticity. The ribbons on the symmetry
plane are the contours at other different values.

from 14≤ t ≤ 17.5 when his computations are still reasonably resolved. This
implies that the maximum vorticity up tot = 17.5 in Kerr’s computations does
not grow faster than doubly exponential in time, which is consistent with our
conclusion.
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Figure 1.3 The local 3D vortex structures of the upper vortex tube and vortex
lines around the maximum vorticity att = 17.

1.3 Numerical evidence of finite time singularity of the 3D
model

As we mentioned in the Introduction, the 3D model shares manyproperties
with the full 3D Navier-Stokes equations at the theoreticallevel. In this sec-
tion, we will demonstrate that the 3D model without the convection term has
a very different behavior from the full Navier-Stokes equation. In particular,
we present numerical evidence based on the computations of [23] that seems
to suggest that the 3D model develops a potential finite time singularity from
smooth initial data with finite energy. However, the mechanism for developing
a finite time singularity of the 3D model seems to be destroyedwhen we add
the convection term back to the 3D model. This illustrates the important role
played by convection from a different perspective.

By exploiting the axisymmetric geometry of the problem, Houand Lei ob-
tained a very efficient adaptive solver with effective local resolutions of order
40963. More specifically, since the potential singularity must appear along the
symmetry axis atr = 0, they used the following coordinate transformation
along ther-direction to achieve the adaptivity by clustering the gridpoints
nearr = 0:

r = f (α) ≡ α − 0.9 sin(πα)/π. (1.11)
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Figure 1.4 Left plot: Study of the vortex stretching term in time, resolution
1536×1024×3072. The fact|ξ · ∇u ·ω| ≤ c1|ω| log |ω| plus D

Dt |ω| = ξ · ∇u ·ω
implies |ω| bounded by doubly exponential. Right plot: log log‖ω‖∞ vs time.

With this level of resolution, they obtained an excellent fitfor the asymptotic
blowup rate of maximum axial vorticity.

The initial condition we consider in our numerical computations is given by

u1(z, r,0) = (1+ sin(4πz))(r2 − 1)20(r2 − 1.2)30, (1.12)

ψ1(z, r,0) = 0, (1.13)

ω1(z, r,0) = 0. (1.14)
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A second order finite difference discretization is used in space, and the classical
fourth order Runge-Kutta method is used to discretize in time.

In the following, we present numerical evidence which seemsto support
the notion thatu1 may develop a potential finite time singularity for the initial
condition we consider. In Figure 1.5 we plot the maximum ofu1 in time over
the time interval [0, 0.021] using the adaptive mesh method withNz = 4096
andNr = 400. The time step is chosen to be∆t = 2.5× 10−7. We observe that
‖u1‖∞ experiences a very rapid growth in time aftert = 0.02. In Figure 1.5 (the
right plot), we also plot log(log(‖u1‖∞)) as a function of time. It is clear that
‖u1‖∞ grows much faster than double exponential in time.

To obtain further evidence for a potential finite time singularity, we study the
asymptotic growth rate of‖u1‖∞ in time. We look for a finite time singularity
of the form:

‖u1‖∞ ≈
C

(T − t)α
. (1.15)

We find that the inverse of‖u1‖∞ is almost a perfect linear function of time,
see Figure 1.6. By using a least square fit of the inverse of‖u1‖∞, we find the
best fit forα, the potential singularity timeT and the constantC. In Figure
1.6 (the left plot), we plot‖u1‖−1

∞ as a function of time. We can see that the
agreement between the computed solution withNz × Nr = 4096× 400 and
the fitted solution is almost perfect. In the right box of Figure 1.6, we plot
‖u1‖∞ computed by our adaptive method against the form fitC/(T − t) with
T = 0.02109 andC = 8.20348. The two curves are almost indistinguishable
during the final stage of the computation fromt = 0.018 tot = 0.021. Note that
u1 has the same scaling as the axial vorticity. Thus, theO(1/(T−t)) blowup rate
of u1 is consistent with the non-blowup criterion of Beale-Kato-Majda type.

We present the 3D view ofu1 as a function ofr andz in Figures 1.7 and
1.8. We note thatu1 is symmetric with respect toz = 0.375 andw1 is anti-
symmetric with respect toz = 0.375. The support of the solutionu1 in the
most singular region is isotropic and appears to be locally self-similar.

To study the dynamic alignment of the vortex stretching term, we plot the
solutionu1 on top ofψ1,z along the symmetry axisr = 0 at t=0.021 in Figure
1.9. We observe that there is a significant overlap between the support of the
maximum ofu1 and that of the maximum ofψ1,z. Moreover, the solutionu1 has
a strong alignment withψ1,z near the region of the maximum ofu1. The local
alignment betweenu1 andψ1,z induces a strong nonlinearity on the right hand
side of theu1 equation. This strong alignment betweenu1 andψ1,z is the main
mechanism for the potential finite time blowup of the 3D model.

It is interesting to see how convection may change the dynamic alignment
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Figure 1.5 Left figure:‖u1‖∞ as a function of time over the interval
[0, 0.021]. The right figure: log(log(‖u1‖∞)) as a function of time over
the same interval. The solution is computed by the adaptive mesh with
Nz = 4096, Nr = 400,∆t = 2.5× 10−7, ν = 0.001.

of the vortex stretching term in the 3D model. We add the convection term
back to the 3D model and use the solution of the 3D model att = 0.02 as
the initial condition for the full Navier-Stokes equations. We observe that the
local alignment betweenu1 andψ1,z is destroyed for the full Navier-Stokes
equations. As a result, the solution becomes defocused and smoother along the
symmetry axis, see Figure 1.10. As time evolves, the two focusing centers ap-
proach each other. This process creates a strong internal layer orthogonal to
thez-axis. The solution forms a jet that moves away from the symmetry axis



14 T. Y. Hou, Z. Shi and S. Wang

0.02 0.0202 0.0204 0.0206 0.0208 0.021 0.0212
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

Time

||u
1||−

1

 

 
Asymptotic fit
N=4096

0.018 0.0185 0.019 0.0195 0.02 0.0205 0.021
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time

||u
1||

 

 
||u

1
||, N=4096

Fitted solution

Figure 1.6 The left plot: The inverse of‖u1‖∞ (dark) versus the asymp-
totic fit (gray) for the viscous model. The right plot:||u1||∞ (dark) versus the
asymptotic fit (gray). The asymptotic fit is of the form:||u1||−1

∞ ≈
(T−t)

C with
T = 0.02109 andC = 8.20348. The solution is computed by an adaptive
mesh withNz = 4096,Nr = 400,∆t = 2.5× 10−7. ν = 0.001.

(thez-axis) and generates many interesting vortex structures. By the Caffarelli-
Kohn-Nirenberg theory, the singularity of the 3D axisymmetric Navier-Stokes
equations must be along the symmetry axis. The fact that the most singular part
of the solution moves away from the symmetry axis suggests that the mech-
anism for generating the finite time singularity of the 3D model has been de-
stroyed by the inclusion of the convection term for this initial condition.
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Figure 1.7 The 3D view ofu1 at t = 0.02 for the viscous model computed by
the adaptive mesh withNz = 4096, Nr = 400,∆t = 2.5× 10−7, ν = 0.001.

1.4 Finite time singularities of the 3D model

The numerical evidence of finite time blow-up of the 3D model motivates us
to prove finite time singularities of the 3D model rigorously. In a recent paper
[26], we developed a new method of analysis and proved rigorously that the
3D model develops finite time singularities for a class of initial boundary value
problems with smooth initial data of finite energy. In our analysis, we consid-
ered the initial boundary value problem of the generalized 3D model which has
the following form (we drop the subscript 1 and substitute (1.6) into (1.5)):

ut = 2uψz, (1.16)

−∆ψt =
(

u2
)

z
, (1.17)

where∆ is ann-dimensional Laplace operator with (x, z) ≡ (x1, x2, ..., xn−1, z).
Our results apply to any dimension greater than or equal to two (n ≥ 2). Here
we only present our results forn = 3. We consider the generalized 3D model in
both a bounded domain and in a semi-infinite domain with a mixed Dirichlet
Robin boundary condition.
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Figure 1.8 The 3D view ofu1 at t = 0.021 for the viscous model computed
by the adaptive mesh withNz = 4096, Nr = 400,∆t = 2.5×10−7, ν = 0.001.

1.4.1 Summary of the main result

In [26], we proved rigorously the following finite time blow-up result for the
3D inviscid model.

Theorem 1.4.1 LetΩx = (0,a) × (0,a), Ω = Ωx × (0,b) andΓ = {(x, z) | x ∈
Ωx, z = 0}. Assume that the initial conditions u0 andψ0 satisfy u0 > 0 for
(x, z) ∈ Ω, u0|∂Ω = 0, u0 ∈ H2(Ω), ψ0 ∈ H3(Ω) andψ satisfies (1.18). More-
over, we assume thatψ satisfies the following mixed Dirichlet Robin boundary
conditions:

ψ|∂Ω\Γ = 0, (ψz + βψ)|Γ = 0, (1.18)

with β >
√

2π
a

(

1+e−2πb/a

1−e−2πb/a

)

. Defineφ(x1, x2, z) =
(

e−α(z−b)+eα(z−b)

2

)

sin
(

πx1
a

)

sin
(

πx2
a

)

whereα satisfies0 < α <
√

2π/a and2
(

π
a

)2 eαb−e−αb

α(eαb+e−αb) = β. If u0 andψ0 satisfy
the following condition:

∫

Ω

(logu0)φdxdz> 0,
∫

Ω

ψ0zφdxdz> 0, (1.19)
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Figure 1.9u1 (dark) versusψ1,z (gray) of the viscous model along the sym-
metry axisr = 0. The left figure corresponds tot = 0.02. The right fig-
ure corresponds tot = 0.021. Adaptive mesh computation withNz = 4096,
Nr = 400,∆t = 2.5× 10−7, ν = 0.001.

then the solution of the 3D inviscid model (1.16)–(1.17) will develop a finite
time singularity in the H2 norm.

1.4.2 Outline of the singularity analysis

We prove the finite time singularity result of the 3D model by contradiction.
The analysis uses the local well-posedness result of the 3D model with the
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above mixed Dirichlet Robin boundary condition, which willbe established
in Section 5. By the local well-posedness result, we know that there exists a
finite time T > 0 such that the initial boundary value problem (1.16)–(1.17)
with boundary condition given in the above theorem has a unique smooth so-
lution with u ∈ C1([0,T),H2(Ω)) andψ ∈ C1([0,T),H3(Ω)). Let Tb be the
largest time such that the system (1.16)–(1.17) with initial conditionu0, ψ0 has
a smooth solution withu ∈ C1([0,Tb); H2(Ω)) andψ ∈ C1([0,Tb); H3(Ω)). We
claim thatTb < ∞. We prove this by contradiction.

Suppose thatTb = ∞. This means that for the given initial datau0, ψ0, the
system (1.16)–(1.17) has a globally smooth solutionu ∈ C1([0,∞); H2(Ω))
andψ ∈ C1([0,∞); H3(Ω)). Note thatu|∂Ω = 0 as long as the solution remains
smooth.

There are several important ingredients in our analysis. The first one is that
we reformulate theu-equation and use log(u) as the new variable. With this
reformulation, the right hand side of the reformulatedu-equation becomes lin-
ear. Such reformulation is possible sinceu0 > 0 in Ω implies thatu > 0 in Ω
as long as the solution remains smooth. We now work with the reformulated
system given below:

(

log(u)
)

t = 2ψz, (x, z) ∈ Ω, (1.20)

−∆ψt =
(

u2
)

z
. (1.21)

The second ingredient is to find an appropriate test functionφ and work with
the weak formulation of (1.20)–(1.21). This test functionφ is chosen as a posi-
tive and smooth eigen-function inΩ that satisfies the following two conditions
simultaneously:

−∆φ = λ1φ, ∂2
zφ = λ2φ, for someλ1, λ2 > 0, (x, z) ∈ Ω. (1.22)

Now we multiply φ to (1.20) andφz to (1.21) and integrate overΩ. Upon
performing integration by parts, we obtain by using (1.22) that

d
dt

∫

Ω

(logu)φdxdz= 2
∫

Ω

ψzφdxdz, (1.23)

λ1
d
dt

∫

Ω

ψzφdxdz= λ2

∫

Ω

u2φdxdz. (1.24)

It is interesting to note that all the boundary terms resulting from integration
by parts vanish due to the boundary condition ofψ, the property of our eigen-
functionφ, the specific choice ofα defined in Theorem 4.1. We have also used
the fact thatu|z=0 = u|z=b = 0. Combining (1.24) with (1.23), we obtain our
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crucial blow-up estimate:

d2

dt2

∫

Ω

(logu)φdxdz=
2λ2

λ1

∫

Ω

u2φdxdz. (1.25)

Further, we note that

∫

Ω

log(u)φdxdz≤
∫

Ω

(log(u))+φdxdz≤
∫

Ω

uφdxdz

≤
(∫

Ω

φdxdz

)1/2 (∫

Ω

φu2dxdz

)1/2

≡ 2a

π
√
α

(∫

Ω

φu2dxdz

)1/2

. (1.26)

From (1.25) and (1.26), we establish a sharp nonlinear dynamic estimate for
(
∫

Ω
φu2dxdz)1/2, which enables us to prove finite time blowup of the 3D model.

This method of analysis is quite robust and captures very well the nonlinear
interaction of the multi-dimensional nonlocal system. As aresult, it provides
a very effective method to analyze the finite time blowup of the 3D modeland
gives a relatively sharp blowup condition on the initial andboundary values
for the 3D model.

1.4.3 Finite time blow-up of the 3D model with conservative BCs

We can also prove finite time blow-up of the 3D model with a conservative
boundary condition in a bounded domain. Specifically, we consider the fol-
lowing initial boundary value problem:















ut = 2uψz

−∆ψt =
(

u2
)

z

, (x, z) ∈ Ω = Ωx × (0,b), (1.27)

ψ|∂Ω\Γ = 0, ψz|Γ = 0, (1.28)

ψ|t=0 = ψ0(x, z), u|t=0 = u0(x, z) ≥ 0,

wherex = (x1, x2), Ωx = (0,a)×(0,a), Γ = {(x, z) ∈ Ω | x ∈ Ωx, z= 0 or z= b}.
The main result is stated in the following theorem.

Theorem 1.4.2 Assume that the initial conditions u0 and ψ0 satisfy u0 ∈
H2(Ω), u0|∂Ω = 0 , u0|Ω > 0, ψ0 ∈ H3(Ω), andψ satisfies (1.28). Let

φ(x, z) =
e−α(z−b) − eα(z−b)

2
sin

πx1

a
sin

πx2

a
, (x, z) ∈ Ω, (1.29)
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with α = π
a , and

A =
∫

Ω

(logu0)φdxdz, B = 2
∫

Ω

ψ0zφdxdz,

r(t) =
2
(

π
a

)2
(eαb − e−αb)

2
(

π
a

)2
− α2

∫

Ωx

(ψ − ψ0)|z=0 sin
πx1

a
sin

πx2

a
dx ≤ B

2
.

If A > 0, B > 0 and r(t) ≤ B
2 as long as u, ψ remain regular, then the solution

of (1.27)–(1.28) will develop a finite time singularity in the H2 norm.

1.4.4 Global regularity of the 3D inviscid model with small data

In this subsection we study the global regularity of the 3D inviscid model for a
class of initial data with some appropriate boundary condition. To simplify the
presentation of our analysis, we useu2 andψz as our new variables. We will
definev = ψz and still useu to stand foru2. Then the 3D model now has the
form:

{

ut = 4uv
−∆vt = uzz

, (x, z) ∈ Ω = (0, δ) × (0, δ) × (0, δ). (1.30)

We choose the following boundary condition forv:

v|∂Ω = −4, (1.31)

and denotev|t=0 = v0(x, z) andu|t=0 = u0(x, z) ≥ 0.
We prove the following global regularity result for the 3D inviscid model

with a family of initial boundary value problems.

Theorem 1.4.3 Assume that u0, v0 ∈ Hs(Ω) with s≥ 4, u0|∂Ω = 0, v0|∂Ω = −4
and v0 ≤ −4 overΩ. Then the solution of (1.30)–(1.31) remains regular in
Hs(Ω) for all time as long as the following holds

δ(4Cs + 1)(‖v0‖Hs +Cs‖u0‖Hs) < 1, (1.32)

where Cs is an interpolation constant. Moreover, we have‖u‖L∞ ≤ ‖u0‖L∞e−7t,
‖u‖Hs(Ω) ≤ ‖u0‖Hs(Ω)e−7t and‖v‖Hs(Ω) ≤ C for some constant C which depends
on u0, v0 and s only.

1.4.5 Blow-up of the 3D model with partial viscosity

In the previous subsections we considered only the inviscidmodel. In this sub-
section we show that the 3D model with partial viscosity can also develop fi-
nite time singularities. Specifically, we consider the following initial boundary
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value problem in a semi-infinite domain:






















ut = 2uψz

ωt =
(

u2
)

z
+ ν∆ω

−∆ψ = ω.

, (x, z) ∈ Ω = Ωx × (0,∞), (1.33)

The initial and boundary conditions are given as follows:

ψ|∂Ω\Γ = 0, (ψz + βψ) |Γ = 0, (1.34)

ω|∂Ω\Γ = 0, (ωz + γω) |Γ = 0, (1.35)

ω|t=0 = ω0(x, z), u|t=0 = u0(x, z) ≥ 0, (1.36)

whereΓ = {(x, z) ∈ Ω | x ∈ Ωx, z= 0}.
Now we state the main result of this subsection.

Theorem 1.4.4 Assume that u0|∂Ω = 0, u0z|∂Ω = 0, u0|Ω > 0, u0 ∈ H2(Ω),
ψ0 ∈ H3(Ω), ω0 ∈ H1(Ω), ψ0 satisfies (1.34) andω0 satisfies (1.35). Further,
we assume thatβ ∈ S∞ as defined in Lemma 1.5.1 andβ >

√
2π
a , γ = 2π2

βa2 . Let

φ(x, z) = e−αz sin
πx1

a
sin

πx2

a
, (x, z) ∈ Ω, (1.37)

whereα = 2π2

βa2 satisfies0 < α <
√

2π/a. Define

A =
∫

Ω

(logu0)φdxdz, B = −
∫

Ω

ω0φzdxdz, D =
2

2
(

π
a

)2
− α2

,(1.38)

I∞ =
∫ ∞

0

dx
√

x3 + 1
, T∗ =

(

πα3D2B
12a

)−1/3

I∞. (1.39)

If A > 0, B > 0, and T∗ < (log 2)
(

ν
(

2π2

a2 − α2
))−1

, then the solution of model
(1.33) with initial and boundary conditions (1.34)–(1.36)will develop a finite
time singularity before T∗.

1.5 Local well-posedness of the 3D model with mixed
Dirichlet Robin Boundary conditions

In this section we prove the local well-posedness of the 3D model with the
mixed Dirichlet Robin boundary conditions considered in the previous section.
The 3D model with partial viscosity has the following form:























ut = 2uψz

ωt = (u2)z + ν∆ω

−∆ψ = ω

, (x, z) ∈ Ω = Ωx × (0,∞), (1.40)
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whereΩx = (0,a) × (0,a). Let Γ = {(x, z) | x ∈ Ωx, z = 0}. The initial and
boundary conditions for (1.40) are given as following:

ω|∂Ω\Γ = 0, (ωz + γω) |Γ = 0, (1.41)

ψ|∂Ω\Γ = 0, (ψz + βψ) |Γ = 0, (1.42)

ω|t=0 = ω0(x, z), u|t=0 = u0(x, z). (1.43)

The analysis of finite time singularity formation of the 3D model uses the
local well-posedness result of the 3D model. The local well-posedness of the
3D model can be proved by using a standard energy estimate anda mollifier
if there is no boundary or if the boundary condition is a standard one, see e.g.
[32]. For the mixed Dirichlet Robin boundary condition we consider here, the
analysis is a bit more complicated since the mixed DirichletRobin condition
gives rise to a growing eigenmode.

There are two key ingredients in our local well-posedness analysis. The first
one is to design a Picard iteration for the 3D model. The second one is to show
that the mapping that generates the Picard iteration is a contraction mapping
and the Picard iteration converges to a fixed point of the Picard mapping by
using the contraction mapping theorem. To establish the contraction property
of the Picard mapping, we need to use the well-posedness property of the heat
equation with the same Dirichlet Robin boundary condition as ω. The well-
posedness analysis of the heat equation with a mixed Dirichlet Robin bound-
ary has been studied in the literature. The case ofγ > 0 is more subtle because
there is a growing eigenmode. Nonetheless, we prove that allthe essential reg-
ularity properties of the heat equation are still valid for the mixed Dirichlet
Robin boundary condition withγ > 0.

The local existence result of our 3D model with partial viscosity is stated in
the following theorem.

Theorem 1.5.1 Assume that u0 ∈ Hs+1(Ω), ω0 ∈ Hs(Ω) for some s>
3/2, u0|∂Ω = u0z|∂Ω = 0 andω0 satisfies (1.41). Moreover, we assume that
β ∈ S∞ (or Sb) as defined in Lemma 1.5.1. Then there exists a finite time
T = T

(

‖u0‖Hs+1(Ω), ‖ω0‖Hs(Ω)

)

> 0 such that the system (1.40) with bound-
ary condition (1.41),(1.42) and initial data (1.43) has a unique solution, u∈
C([0,T],Hs+1(Ω)), ω ∈ C([0,T],Hs(Ω)) andψ ∈ C([0,T],Hs+2(Ω)).

The local well-posedness analysis relies on the following local well-posedness
of the heat equation and the elliptic equation with mixed Dirichlet Robin bound-
ary conditions. First, the local well-posedness of the elliptic equation with the
mixed Dirichlet Robin boundary condition is given by the following lemma
[26]:
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Lemma 1.5.1 There exists a unique solution v∈ Hs(Ω) to the boundary value
problem:

−∆v = f , (x, z) ∈ Ω, (1.44)

v|∂Ω\Γ = 0, (vz + βv)|Γ = 0, (1.45)

if β ∈ S∞ ≡ {β | β , π|k|
a for all k ∈ Z2}, f ∈ Hs−2(Ω) with s ≥ 2 and

f |∂Ω\Γ = 0. Moreover we have

‖v‖Hs(Ω) ≤ Cs‖ f ‖Hs−2(Ω), (1.46)

where Cs is a constant depending on s,|k| =
√

k2
1 + k2

2.

Definition 1.5.1 LetK : Hs−2(Ω) → Hs(Ω) be a linear operator defined as
following: for all f ∈ Hs−2(Ω),

K( f ) is the solution of the boundary value problem (1.44)–(1.45).

It follows from Lemma 1.5.1 that for anyf ∈ Hs−2(Ω), we have

‖K( f )‖Hs(Ω) ≤ Cs‖ f ‖Hs−2(Ω). (1.47)

For the heat equation with the mixed Dirichlet Robin boundary condition,
we have the following result.

Lemma 1.5.2 There exists a unique solutionω ∈ C([0,T]; Hs(Ω)) to the
initial boundary value problem:

ωt = ν∆ω, (x, z) ∈ Ω, (1.48)

ω|∂Ω\Γ = 0, (ωz + γω)|Γ = 0, (1.49)

ω|t=0 = ω0(x, z), (1.50)

for ω0 ∈ Hs(Ω) with s> 3/2. Moreover we have the following estimates in the
caseγ > 0

‖ω(t)‖Hs(Ω) ≤ C(γ, s)eνγ
2t‖ω0‖Hs(Ω), t ≥ 0, (1.51)

and

‖ω(t)‖Hs(Ω) ≤ C(γ, s, t)‖ω0‖L2(Ω), t > 0. (1.52)

Remark 1.5.1 We remark that the growth factor eνγ
2t in (1.51) is absent in

the case ofγ ≤ 0 since there is no growing eigenmode in this case.

Proof First, we prove the solution of the system (1.48)–(1.50) is unique. Let
ω1, ω2 ∈ Hs(Ω) be two smooth solutions of the heat equation for 0≤ t < T
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satisfying the same initial condition and the Dirichlet Robin boundary condi-
tion. Letω = ω1 − ω2. We will prove thatω = 0 by using an energy estimate
and the Dirichlet Robin boundary condition atΓ:

1
2

d
dt

∫

Ω

ω2dxdz= ν
∫

Ω

ω∆ωdxdz

= −ν
∫

Ω

|∇ω|2dxdz− ν
∫

Γ

ωωzdx

= −ν
∫

Ω

|∇ω|2dxdz+ νγ
∫

Γ

ω2dx

= −ν
∫

Ω

|∇ω|2dxdz− νγ
∫

Γ

∫ ∞

z

(

ω2
)

z
dzdx

= −ν
∫

Ω

|∇ω|2dxdz− 2νγ
∫

Γ

∫ ∞

z
ωωzdxdz

≤ −ν
∫

Ω

|∇ω|2dxdz+
ν

2

∫

Ω

|ωz|2dxdz+ 2νγ2
∫

Ω

ω2dxdz

≤ − ν
2

∫

Ω

|∇ω|2dxdz+ 2νγ2
∫

Ω

ω2dxdz, (1.53)

where we have used the fact that the smooth solution of the heat equationω
decays to zero asz→ ∞. Thus, we get

1
2

d
dt

∫

Ω

ω2dxdz≤ 2νγ2
∫

Ω

ω2dxdz. (1.54)

It follows from Gronwall’s inequality

e−4νγ2t
∫

Ω

ω2dxdz≤
∫

Ω

ω2
0dxdz= 0, (1.55)

sinceω0 = 0. Sinceω ∈ Hs(Ω) with s > 3/2, this implies thatω = 0 for 0 ≤
t < T which proves the uniqueness of smooth solutions for the heatequation
with the mixed Dirichlet Robin boundary condition.

Next, we will prove the existence of the solution by constructing a solution
explicitly. Let η(x, z, t) be the solution of the following initial boundary value
problem:

ηt = ν∆η, (x, z) ∈ Ω, (1.56)

η|∂Ω = 0, η|t=0 = η0(x, z), (1.57)

and letξ(x, t) be the solution of the following PDE inΩx:

ξt = ν∆xξ + νγ
2ξ, x ∈ Ωx, (1.58)

ξ|∂Ωx = 0, ξ|t=0 = ω0(x), (1.59)



26 T. Y. Hou, Z. Shi and S. Wang

where∆x =
∂2

∂x2
1
+ ∂2

∂x2
2

andω0(x) = 2γ
∫ ∞

0
ω0(x, z)e−γzdz. From the standard

theory of the heat equation, we know thatη andξ both exist globally in time.
We are interested in the case when the initial valueη0(x, z) is related toω0 by

solving the following ODE as a function ofzwith x being fixed as a parameter:

−1
γ
η0z + η0 = ω0(x, z) − ω0(x)e−γz, η0(x,0) = 0. (1.60)

Define

ω(x, z, t) ≡ −1
γ
ηz + η + ξ(x, t)e−γz, (x, z) ∈ Ω. (1.61)

It is easy to check thatω satisfies the heat equation fort > 0 and the ini-
tial condition. Obviously,ω also satisfies the boundary condition on∂Ω\Γ. To
verify the boundary condition onΓ, we observe by a direct calculation that
(ωz + γω)|Γ = − 1

γ
(ηz)z|Γ. Sinceη(x, z)|Γ = 0, we obtain by usingηt = ν∆η and

taking the limit asz→ 0+ that∆η|Γ = 0, which implies thatηzz|Γ = 0. There-
fore,ω also satisfies the Dirichlet Robin boundary condition atΓ. This shows
thatω is a solution of the system (1.48)–(1.50). By the uniquenessresult that
we proved earlier, the solution of the heat equation must be given by (1.61).

Sinceη andξ are solutions of the heat equation with a standard Dirichlet
boundary condition, the classical theory of the heat equation [15] gives the
following regularity estimates:

‖η‖Hs(Ω) ≤ C ‖η0‖Hs(Ω) , ‖ξ(x)‖Hs(Ωx) ≤ Ceνγ
2t ‖ω0(x)‖Hs(Ωx) . (1.62)

Recall thatηzz|Γ = 0. Therefore,ηz also solves the heat equation with the same
Dirichlet Robin boudary condition:

(ηz)t = ν∆ηz, (x, z) ∈ Ω, (1.63)

(ηz)z |Γ = 0, (ηz)|∂Ω\Γ = 0, (ηz)|t=0 = η0z(x, z), (1.64)

which implies that

‖ηz‖Hs(Ω) ≤ C ‖η0z‖Hs(Ω) . (1.65)

Putting all the above estimates forη, ηz andξ together and using (1.61), we
obtain the following estimate:

‖ω‖Hs(Ω) =

∥

∥

∥

∥

∥

−1
γ
ηz + η + ξ(x, t)e−γz

∥

∥

∥

∥

∥

Hs(Ω)

≤ 1
γ
‖ηz‖Hs(Ω) + ‖η‖Hs(Ω) +

∥

∥

∥ξ(x, t)e−γz
∥

∥

∥

Hs(Ω)

≤ C(γ, s)
(

‖η0z‖Hs(Ω) + ‖η0‖Hs(Ω) + eνγ
2t ‖ω0(x)‖Hs(Ωx)

)

. (1.66)
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It remains to bound‖η0z‖Hs(Ω), ‖η0‖Hs(Ω) and‖ω0(x)‖Hs(Ωx) in terms of‖ω0‖Hs(Ω).
By solving the ODE (1.60) directly, we can expressη in terms ofω0 explicitly

η0(x, z) = −γeγz
∫ z

0
e−γz′ f (x, z′)dz′ = γ

∫ ∞

z
e−γ(z′−z) f (x, z′)dz′, (1.67)

where f (x, z) = ω0(x, z) − ω0(x)e−γz and we have used the property that
∫ ∞

0
f (x, z)e−γzdz= 0.

By using integration by parts, we have

η0z(x, z) = −γ f (x, z) + γ2
∫ ∞

z
e−γ(z′−z) f (x, z′)dz′

= γ

∫ ∞

z
e−γ(z′−z) fz′ (x, z′)dz′. (1.68)

By induction we can show that for anyα = (α1, α2, α3) ≥ 0

Dαη0 = γ

∫ ∞

z
e−γ(z′−z)Dα f (x, z′)dz′. (1.69)

Let K(z) = γe−γzχ(z) andχ(z) be the characteristic function

χ(z) =

{

0, z≤ 0,
1, z> 0.

(1.70)

ThenDαη0 can be written in the following convolution form:

Dαη0(x, z) =
∫ ∞

0
K(z′ − z)Dα f (x, z′)dz′. (1.71)

Using Young’s inequality (see e.g. page 232 of [17]), we obtain:

‖Dαη0‖L2(Ω) ≤ ‖K(z)‖L1(R+)‖Dα f ‖L2(Ω)

≤ C(γ)
∥

∥

∥Dαω0 − (−γ)α3 e−γzD(α1,α2)ω0(x)
∥

∥

∥

L2(Ω)

≤ C(γ, α)
(

‖Dαω0‖L2(Ω) +
∥

∥

∥D(α1,α2)ω0(x)
∥

∥

∥

L2(Ωx)

)

. (1.72)

Moreover, we obtain by using the Hölder inequality that

∥

∥

∥D(α1,α2)ω0(x)
∥

∥

∥

L2(Ωx)
=















∫

Ωx

(∫ ∞

0
e−γzD(α1,α2)ω0(x, z)dz

)2

dx















1/2

≤
(

1
2γ

∫

Ωx

∫ ∞

0

(

D(α1,α2)ω0(x, z)
)2

dzdx
)1/2

=
1

√

2γ

∥

∥

∥D(α1,α2)ω0(x, z)
∥

∥

∥

L2(Ω)
. (1.73)
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Substituting (1.73) into (1.72) yields

‖Dαη0‖L2(Ω) ≤ C(γ, α)
(

‖Dαω0‖L2(Ω) +
∥

∥

∥D(α1,α2)ω0

∥

∥

∥

L2(Ω)

)

, (1.74)

which implies that

‖η0‖Hs(Ω) ≤ C(γ, s) ‖ω0‖Hs(Ω) , ∀ s≥ 0. (1.75)

It follows from (1.73) that

‖ω0(x)‖Hs(Ωx) ≤ C(γ) ‖ω0‖Hs(Ω) , ∀ s≥ 0. (1.76)

On the other hand, we obtain from the equation forη0 (1.60) that

‖η0z‖Hs(Ω) = γ ‖ f + η0‖Hs(Ω) ≤ C(γ, s) ‖ω0‖Hs(Ω) , ∀ s≥ 0. (1.77)

Upon substituting (1.75)–(1.77) into (1.66), we obtain

‖ω‖Hs(Ω) ≤ C(γ, s)eνγ
2t ‖ω0‖Hs(Ω) , (1.78)

whereC(γ, s) is a constant depending only onγ ands. This proves (1.51).
To prove (1.52), we use the classical regularity result for the heat equation

with the homogeneous Dirichlet boundary condition to obtain the following
estimates fort > 0:

‖η‖Hs(Ω) ≤ C(t)‖η0‖L2(Ω), (1.79)

‖ηz‖Hs(Ω) ≤ C(s, t)‖η0z‖L2(Ω), (1.80)

‖ω(x)‖Hs(Ωx) ≤ C(s, t)eνγ
2t ‖ω0(x)‖L2(Ωx) , (1.81)

whereC(s, t) is a constant depending ons andt. By combining (1.79)–(1.81)
with estimates (1.75)–(1.77), we obtain for anyt > 0 that

‖ω‖Hs(Ω) ≤ C(γ, s, t)
(

‖η0z‖L2(Ω) + ‖η0‖L2(Ω) + eνγ
2t ‖ω0(x)‖L2(Ωx)

)

≤ C(γ, s, t)‖ω0‖L2(Ω), (1.82)

whereC(γ, s, t) < ∞ is a constant depending onγ, s andt. This proves (1.52)
and completes the proof of the lemma. �

We also need the following well-known Sobolev inequality [18].

Lemma 1.5.3 Let u, v ∈ Hs(Ω) with s> 3/2. We have

‖uv‖Hs(Ω) ≤ c‖u‖Hs(Ω)‖v‖Hs(Ω). (1.83)

Now we are ready to give the proof of Theorem 1.5.1.
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Proof of Theorem 1.5.1Let v = u2. First, using the definition of the operator
K (see Definition 1.5.1), we can rewrite the 3D model with partial viscosity in
the following equivalent form:

{

vt = 4vK(ω)z

ωt = vz + ν∆ω
, (x, z) ∈ Ω = Ωx × (0,∞), (1.84)

with the initial and boundary conditions given as follows:

ω|∂Ω\Γ = 0, (ωz + γω) |Γ = 0, (1.85)

ω|t=0 = ω0(x, z) ∈Ws, v|t=0 = v0(x, z) ∈ Vs+1, (1.86)

whereVs+1 = {v ∈ Hs+1 : v|∂Ω = 0, vz|∂Ω = 0, vzz|∂Ω = 0} andWs = {w ∈ Hs :
w|∂Ω\Γ = 0, (wz + γw)|Γ = 0}.

We note that the conditionu0|∂Ω = u0z|∂Ω = 0 implies thatv0|∂Ω = v0z|∂Ω =
v0zz|∂Ω = 0 by using the relationv0 = u2

0. Thus we havev0 ∈ Vs+1. It is easy to
show by using theu-equation that the propertyu0|∂Ω = u0z|∂Ω = 0 is preserved
dynamically. Thus we havev ∈ Vs+1.

DefineU = (U1,U2) = (v, ω) andX = C([0,T]; Vs+1) ×C([0,T]; Ws) with
the norm

‖U‖X = sup
t∈[0,T]

‖U1‖Hs+1(Ω) + sup
t∈[0,T]

‖U2‖Hs(Ω) , ∀U ∈ X

and letS = {U ∈ X : ‖U‖X ≤ M}.
Now, define the mapΦ : X → X in the following way: letΦ(ṽ, ω̃) = (v, ω).

Then for anyt ∈ [0,T],

v(x, z, t) = v0(x, z, t) + 4
∫ t

0
ṽ(x, z, t′)K(ω̃)z(x, z, t′)dt′, (1.87)

ω(x, z, t) = L(ṽz, ω0; x, z, t), (1.88)

whereω(x, z, t) = L(ṽz, ω0; x, z, t) is the solution of the following equation:

ωt = ṽz + ν∆ω, (x, z) ∈ Ω = Ωx × (0,∞), (1.89)

with the initial and boundary conditions:

ω|∂Ω\Γ = 0, (ωz + γω) |Γ = 0, ω|t=0 = ω0(x, z).

We use the mapΦ to define a Picard iteration:Uk+1 = Φ(Uk) with U0 =

(v0, ω0). In the following, we will prove that there existT > 0 andM > 0 such
that

1. Uk ∈ S, for all k.
2.

∥

∥

∥Uk+1 − Uk
∥

∥

∥

X
≤ 1

2

∥

∥

∥Uk − Uk−1
∥

∥

∥

X
, for all k.
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Then by the contraction mapping theorem, there existsU = (v, ω) ∈ S such
thatΦ(U) = U which implies thatU is a local solution of the system (1.84) in
X.

First, by Duhamel’s principle, we have for anyg ∈ C([0,T]; Vs) that

L(g, ω0; x, z, t) = P(ω0; 0, t) +
∫ t

0
P(g; t′, t)dt′, (1.90)

whereP(g; t′, t) = g̃(x, z, t) is defined as the solution of the following initial
boundary value problem at timet:

g̃t = ν∆g̃, (x, z) ∈ Ω = Ωx × (0,∞), (1.91)

with the initial and boundary conditions:

g̃|∂Ω\Γ = 0, (g̃z + γg̃) |Γ = 0, g̃(x, z, t′) = g(x, z, t′). (1.92)

We observe thatg(x, z, t′) also satisfies the same boundary condition asω for
any 0≤ t′ ≤ t sinceg = vk

z andvk ∈ Vs+1.
Now we can apply Lemma 1.5.2 to conclude that for anyt′ < T and t ∈

[t′,T] we have

‖P(g; t′, t)‖Hs(Ω) ≤ C(γ, s)eνγ
2(t−t′)‖g(x, z, t′)‖Hs(Ω), (1.93)

which implies the following estimate forL: for all t ∈ [0,T],

‖L(g, ω0; x, z, t)‖Hs(Ω) ≤ C(γ, s)eνγ
2t

(

‖ω0‖Hs(Ω) + t sup
t′∈[0,t]

‖g(x, z, t′)‖Hs(Ω)

)

. (1.94)

Further, by using Lemma 1.5.1 and the above estimate (1.94) for the se-
quenceUk = (vk, ωk), we get the following estimate:∀t ∈ [0,T],
∥

∥

∥vk+1
∥

∥

∥

Hs+1(Ω)
≤ ‖v0‖Hs+1(Ω) + 4T sup

t∈[0,T]

∥

∥

∥vk(x, z, t)
∥

∥

∥

Hs+1(Ω)
sup

t∈[0,T]

∥

∥

∥K(ωk)z(x, z, t)
∥

∥

∥

Hs+1(Ω)
,

≤ ‖v0‖Hs+1(Ω) + 4T sup
t∈[0,T]

∥

∥

∥vk(x, z, t)
∥

∥

∥

Hs+1(Ω)
sup

t∈[0,T]

∥

∥

∥ωk(x, z, t)
∥

∥

∥

Hs(Ω)
, (1.95)

∥

∥

∥ωk+1
∥

∥

∥

Hs(Ω)
≤ C(γ, s)eνγ

2t

(

‖ω0‖Hs(Ω) + t sup
t′∈[0,t]

∥

∥

∥vk
z(x, z, t

′)
∥

∥

∥

Hs(Ω)

)

≤ C(γ, s)eνγ
2T

(

‖ω0‖Hs(Ω) + T sup
t∈[0,T]

∥

∥

∥vk
∥

∥

∥

Hs+1(Ω)

)

. (1.96)

Next, we will use mathematical induction to prove that ifT satisfies the fol-
lowing inequality:

8C(γ, s)Teνγ
2T

(

‖ω0‖Hs(Ω) + 2T ‖v0‖Hs+1(Ω)

)

≤ 1 (1.97)
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then for allk ≥ 0 andt ∈ [0,T], we have that

∥

∥

∥vk
∥

∥

∥

Hs+1(Ω)
≤ 2‖v0‖Hs+1(Ω) , (1.98)

∥

∥

∥ωk
∥

∥

∥

Hs(Ω)
≤ C(γ, s)eνγ

2T
(

‖ω0‖Hs(Ω) + 2T ‖v0‖Hs+1(Ω)

)

. (1.99)

First of all,U0 = (v0, ω0) satisfies (1.98) and (1.99). AssumeUk = (vk, ωk) has
this property, then forUk+1 = (vk+1, ωk+1), using (1.95) and (1.96), we have

∥

∥

∥vk+1
∥

∥

∥

Hs+1(Ω)
≤ ‖v0‖Hs+1(Ω) + 4T sup

t∈[0,T]

∥

∥

∥vk(x, z, t)
∥

∥

∥

Hs+1(Ω)
sup

t∈[0,T]

∥

∥

∥ωk(x, z, t)
∥

∥

∥

Hs(Ω)

≤ ‖v0‖Hs+1(Ω)

(

1+ 8C(γ, s)Teνγ
2T

(

‖ω0‖Hs(Ω) + 2T ‖v0‖Hs+1(Ω)

))

≤ 2‖v0‖Hs+1(Ω) , ∀t ∈ [0,T], (1.100)

∥

∥

∥ωk+1
∥

∥

∥

Hs(Ω)
≤ C(γ, s)eνγ

2T

(

‖ω0‖Hs(Ω) + T sup
t∈[0,T]

∥

∥

∥vk
∥

∥

∥

Hs+1(Ω)

)

≤ C(γ, s)eνγ
2T

(

‖ω0‖Hs(Ω) + 2T ‖v0‖Hs+1(Ω)

)

, ∀t ∈ [0,T].(1.101)

Then, by induction, we prove that for anyk ≥ 0, Uk = (vk, ωk) is bounded by
(1.98) and (1.99).

We want to point out that there existsT > 0 such that the inequality (1.97)
is satisfied. One choice ofT is given as following:

T1 = min
{

[

8C(γ, s)eνγ
2 (

‖ω0‖Hs(Ω) + 2‖v0‖Hs+1(Ω)

)]−1
,1

}

. (1.102)

Using the choice of T in (1.102), we can choose

M = 2‖v0‖Hs+1(Ω) +C(γ, s)eνγ
2 (

‖ω0‖Hs(Ω) + 2‖v0‖Hs+1(Ω)

)

.

Then we haveUk ∈ S, for all k.

Next, we will prove thatΦ is a contraction mapping for some small 0< T ≤
T1.
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First of all, by using Lemmas 1.5.1 and 1.5.3, we have

∥

∥

∥vk+1 − vk
∥

∥

∥

Hs+1(Ω)
=

∥

∥

∥

∥

∥

∥

∫ t

0
vk(x, t′)K(ωk)z(x, t′)dt′ −

∫ t

0
vk−1(x, t′)K(ωk−1)z(x, t′)dt′

∥

∥

∥

∥

∥

∥

Hs+1(Ω)

≤
∥

∥

∥

∥

∥

∥

∫ t

0

(

vk − vk−1
)

(x, t′)K(ωk)z(x, t′)dt′
∥

∥

∥

∥

∥

∥

Hs+1(Ω)

+

∥

∥

∥

∥

∥

∥

∫ t

0
vk−1(x, t′)

(

K(ωk)z − K(ωk−1)z

)

(x, t′)dt′
∥

∥

∥

∥

∥

∥

Hs+1(Ω)

≤ T sup
t∈[0,T]

∥

∥

∥vk − vk−1
∥

∥

∥

Hs+1(Ω)
sup

t∈[0,T]

∥

∥

∥K(ωk)z

∥

∥

∥

Hs+1(Ω)

+T sup
t∈[0,T]

∥

∥

∥vk−1
∥

∥

∥

Hs+1(Ω)
sup

t∈[0,T]

∥

∥

∥K(ωk − ωk−1)z

∥

∥

∥

Hs+1(Ω)

≤ MT

(

sup
t∈[0,T]

∥

∥

∥vk − vk−1
∥

∥

∥

Hs+1(Ω)
+ sup

t∈[0,T]

∥

∥

∥ωk − ωk−1
∥

∥

∥

Hs(Ω)

)

. (1.103)

On the other hand, Lemma 1.5.2 and (1.90) imply
∥

∥

∥ωk+1 − ωk
∥

∥

∥

Hs(Ω)
=

∥

∥

∥L(vk
z, ω0; x, t) − L(vk−1

z , ω0; x, t)
∥

∥

∥

Hs(Ω)

≤
∥

∥

∥

∥

∥

∥

∫ t

0
P(vk

z − vk−1
z ; t′, t)dt′

∥

∥

∥

∥

∥

∥

Hs(Ω)

≤ TC(γ, s)eνγ
2T sup

t∈[0,T]

∥

∥

∥vk
z − vk−1

z

∥

∥

∥

Hs(Ω)

≤ TC(γ, s)eνγ
2T sup

t∈[0,T]

∥

∥

∥vk − vk−1
∥

∥

∥

Hs+1(Ω)
. (1.104)

Let

T = min

{

[

8C(γ, s)eνγ
2 (

‖ω0‖Hs(Ω) + 2‖v0‖Hs+1(Ω)

)]−1
,
[

2C(γ, s)eνγ
2]−1

,
1

2M
, 1

}

. (1.105)

Then, we have
∥

∥

∥Uk+1 − Uk
∥

∥

∥

X
≤ 1

2

∥

∥

∥Uk − Uk−1
∥

∥

∥

X
.

This proves that the sequenceUk converges to a fixed point of the mapΦ :
X → X, and the limiting fixed pointU = (v, ω) is a solution of the 3D model
with partial viscosity. Moreover, by passing to the limit in(1.98)–(1.99), we
obtain the followinga priori estimate for the solution (v, ω):

‖v‖Hs+1(Ω) ≤ 2‖v0‖Hs+1(Ω) , (1.106)

‖ω‖Hs(Ω) ≤ C(γ, s)eνγ
2T

(

‖ω0‖Hs(Ω) + 2T ‖v0‖Hs+1(Ω)

)

, (1.107)

for 0 ≤ t ≤ T with T defined in (1.105).
It remains to show that the smooth solution of the 3D model with partial
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viscosity is unique. Let (v1, ω1) and (v2, ω2) be two smooth solutions of the 3D
model with the same initial data and satisfying‖vi‖Hs+1(Ω) ≤ M and‖ωi‖Hs(Ω) ≤
M for i = 1,2 and 0≤ t ≤ T, whereM is a positive constant depending on
the initial data as well asγ, s, andT. Sinces > 3/2, the Sobolev embedding
theorem [15] implies that

‖vi‖L∞(Ω) ≤ ‖vi‖Hs+1(Ω) ≤ M, i = 1,2, (1.108)

‖K(ωi)z‖L∞(Ω) ≤ ‖K(ωi)z‖Hs(Ω) ≤ Cs ‖ωi‖Hs(Ω) ≤ CsM, i = 1,2.(1.109)

Let v = v1 − v2 andω = ω1 − ω2. Then (v, ω) satisfies
{

vt = 4vK(ω1)z + 4v2K(ω)z

ωt = vz + ν∆ω
, (x, z) ∈ Ω = Ωx × (0,∞),(1.110)

withω|∂Ω\Γ = 0, (ωz + γω) |Γ = 0, andω|t=0 = 0,v|t=0 = 0.By using (1.108)–
(1.109), and proceeding as the uniqueness estimate for the heat equation in
(1.53), we can derive the following estimate forv andω:

d
dt
‖v‖2L2(Ω) ≤ C1(‖v‖2L2(Ω) + ‖ω‖

2
L2(Ω)), (1.111)

d
dt
‖ω‖2L2(Ω) ≤ C3(‖v‖2L2(Ω) + ‖ω‖

2
L2(Ω)), (1.112)

whereCi (i = 1,2,3) are positive constants depending onM, ν, γ, Cs. In ob-
taining the estimate for (1.112), we have performed integration by parts in the
estimate of thevz-term in theω-equation and absorbing the contribution from
ωz by the diffusion term. There is no contribution from the boundary term
sincev|z=0 = 0. We have also used the property‖K(ω)z‖L2(Ω) ≤ Cs‖ω‖L2(Ω),
which can be proved directly by following the argument in theAppendix
of [26]. Sincev0 = 0 andω0 = 0, the Gronwall inequality implies that
‖v‖L2(Ω) = ‖ω‖L2(Ω) = 0 for 0 ≤ t ≤ T. Furthermore, sincev ∈ Hs+1 and
ω ∈ Hs with s > 3/2, v andω are continuous. Thus we must havev = ω = 0
for 0 ≤ t ≤ T. This proves the uniqueness of the smooth solution for the 3D
model. �
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