
A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo

method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Inverse Problems 27 105004

(http://iopscience.iop.org/0266-5611/27/10/105004)

Download details:

IP Address: 128.148.160.223

The article was downloaded on 12/01/2012 at 17:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0266-5611/27/10
http://iopscience.iop.org/0266-5611
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING INVERSE PROBLEMS

Inverse Problems 27 (2011) 105004 (25pp) doi:10.1088/0266-5611/27/10/105004

A Bayesian approach to multiscale inverse problems
using the sequential Monte Carlo method

Jiang Wan and Nicholas Zabaras1

Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace
Engineering, 101 Frank H T Rhodes Hall, Cornell University, Ithaca, NY 14853-3801, USA

E-mail: zabaras@cornell.edu

Received 20 September 2010, in final form 26 May 2011
Published 16 September 2011
Online at stacks.iop.org/IP/27/105004

Abstract
A new Bayesian computational approach is developed to estimate spatially
varying parameters. The sparse grid collocation method is adopted to
parameterize the spatial field. Based on a hierarchically structured sparse
grid, a multiscale representation of the spatial field is constructed. An adaptive
refinement strategy is then used for computing the spatially varying parameter.
A sequential Monte Carlo (SMC) sampler is used to explore the posterior
distributions defined on multiple scales. The SMC sampling is directly
parallelizable and is superior to conventional Markov chain Monte Carlo
methods for multi-modal target distributions. The samples obtained at coarser
levels of resolution are used to provide prior information for the estimation
at finer levels. This Bayesian computational approach is rather general and
applicable to various spatially varying parameter estimation problems. The
method is demonstrated with the estimation of permeability in flows through
porous media.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An important category of inverse problems is the identification of spatially varying parameters
using indirect data. A typical example is the permeability estimation of the aquifer from flow
data. The measurement error and inadequacy of models for complicated physical phenomena
can reduce the accuracy of the estimation [1, 2]. The deterministic approaches address
these problems based on exact matching or least-squares optimization without quantifying the
uncertainty of the solution [3]. Other alternative approaches based on the spectral stochastic
method or Bayesian inference [4–8] take into account the statistical nature of inverse problems
and provide a full probabilistic description of the computed fields.
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In Bayesian inference of spatially varying parameters, finite element methods are often
used to discretize the unknown field [9, 10]. Standard models for spatial data, such as
the Markov random field or Gaussian process (GP), are then used to model the spatially
varying parameters [2, 9–12]. To increase the flexibility of the model, the process convolution
approach is used as an alternative [2, 10]. By convolving white noise with a smoothing kernel,
the unknown parameter field is approximated as a superposition of kernel-type functions
centered at various locations. The inverse problem is then transformed to one that infers
the coefficients of the expansion. In this scheme, the choice of kernels is important [11].
However, these methods are based on assumptions about the spatial correlation and are not
suitable for complicated spatial fields. This challenge motivated us to develop a new way
of modeling the unknown field of spatially varying parameters. To this end, we introduce
a hierarchical representation of the parameter field based on sparse grid interpolation. The
sparse grid collocation method uses the Smolyak algorithm to construct an interpolation of
the target function with hierarchical grids and basis functions [13, 14]. The collocation points
(nodes) are selected in a nested fashion to obtain many recurring points and basis functions with
increasing sparse grid levels [14–16]. In other words, the basis functions are constructed on
multiple scales. An adaptive refinement strategy is proposed for optimal choice of collocation
points using hierarchical surplus as an error indicator to place more points around non-smooth
regions [16]. In this way, rapid changes in the spatial field can be effectively captured and
an optimal representation of the spatially varying parameter with minimum requirement of
collocation points is achieved. In this paper, we start from a coarse level of sparse grid
representation of the unknown parameter field and make inference about the surpluses. The
magnitude of the posterior mean of the surpluses controls any further refinement.

The Bayesian inference is performed using Monte Carlo (MC) methods. Standard MC
methods such as Markov chain Monte Carlo (MCMC) generally perform poorly for multi-
modal target distributions. In this paper, we propose a sequential Monte Carlo (SMC) algorithm
for sampling from the posterior distributions on various levels of the sparse grid. For each
target distribution defined on a given sparse grid, a sequence of auxiliary distributions is
constructed. A set of random samples is propagated according to these distributions using
important sampling and resampling techniques [2, 17–20]. Great robustness to multimodality
is then achieved. Moreover, the SMC method naturally fits the hierarchical representation of
the spatially varying parameters. The SMC method enables a hierarchical estimation based on
the nested property of the sparse grid. The estimates at coarse levels provide plenty of prior
information for the estimation on finer levels, which results in more efficient exploration of
the state space. In addition, this algorithm is directly parallelizable.

The rest of the paper is structured as follows. In section 2, the parameterization of
the unknown parameter field using sparse grids is introduced. In section 3, a one-scale
Bayesian model for the spatially varying parameter is built. The SMC method is utilized in
the exploration of the posterior state space. In section 4, a strategy that bridges the estimation
of surpluses on different scales is proposed. Section 5 presents a case study on permeability
estimation. Finally, conclusions are given in section 6.

2. Parameterization of the unknown parameter field

The spatially varying parameter of a physical system belongs to an infinite dimensional space.
In a Bayesian framework, it is usually reduced to a finite space and the inference is performed
on a finite set of random variables. A simple way of implementing this task is to discretize
the spatial domain into finite elements. The value of the spatially varying parameter is
assumed constant within each element [9]. However, if improper resolution of discretization
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Figure 1. Hierarchical basis functions ai
j with the support nodes (left) and the hierarchical

surpluses (right). The surplus wi
j is defined as the difference between the function value computed

at a newly added point on the current sparse grid and the interpolated value at this point from the
previous interpolation level.

is selected, either overfitting or a waste of computational resources takes place [2]. To increase
the flexibility of the model, several researchers consider a basis function approach, such as in
the truncated Karhumen–Loève expansion or using Gaussian kernels, to represent the unknown
parameter field [2, 10, 21, 22]. However, these methods might require prior knowledge of the
correlation or covariance functions of the stochastic process. In addition, an optimal choice
of the basis could be a difficult task. Although the number of basis functions is not fixed and
treated as a random variable in the trans-dimensional MCMC method, it is difficult to alter the
dimension significantly while ensuring a reasonable acceptance ratio [23, 24].

In this work, we propose a hierarchical basis representation of the spatially varying
parameter based on the sparse grid interpolation method. The basic idea is to have a hierarchical
structure of representation that ranges from coarse to fine scales of discretization. Thus, we
can perform sequential Bayesian estimation from a coarse scale with a few collocation points
until an optimal choice of collocation points and basis functions is achieved. The method is
still based on a finite element discretization of the spatial domain for the purpose of solving
the underlying differential equations, but the unknown parameter field is approximated using
interpolating functions on a set of collocation points.

The sparse grid method is a special discretization technique which constructs hierarchical
interpolation based on the Smolyak algorithm [14–16]. The standard sparse grid is defined with
collocation points and basis functions completely fixed at different levels of resolution. Given
a sparse grid, the unknown function for the spatially varying parameter can be approximated
using basis functions associated with the grid. For example, consider a parameter θ in 1D; the
function θ = f (x) is approximated by the nodal basis of interpolation level 2 as (figure 1)

θ = f (x) ≈ w1
1a

1
1 + w2

1a
2
1 + w2

2a
2
2 . (1)

On level 3, it is approximated as

θ = f (x) ≈ w1
1a

1
1 + w2

1a
2
1 + w2

2a
2
2 + w3

1a
3
1 + w3

2a
3
2, (2)

by hierarchically adding two basis functions.
The sparse grid provides several advantages in Bayesian inference of spatially varying

parameters. First, the accuracy of the interpolation is increased without discarding previous
results. The reusability of the collocation points and basis functions enables a sequential
estimation of the surpluses from coarse scales. One does not have to set up a fine grid and
estimate a large number of surpluses simultaneously. Furthermore, the definition of the surplus
and the nested fashion of the collocation points potentially enable an adaptive refinement of
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the grid. The collocation points of the adaptive sparse grid are case determined and are only
a subset of the nodes of the standard sparse grid at the same level, which further reduces the
dimensionality of the inverse problem. Detailed discussion about these topics will be given in
later sections as part of our discussion of the hierarchical Bayesian model.

3. Bayesian inference

In the last section, the spatially varying parameter is parameterized by the sparse grid method.
In the Bayesian framework, the unknown surpluses are treated as random variables and inferred
from the observation data. In this section, a complete one-scale Bayesian model is developed
on a pre-determined sparse grid. The SMC sampler is utilized for an efficient exploration of
the posterior state space.

3.1. Bayesian formulation

Consider a generalized forward problem defined as

d ≈ F (θ), (3)

where d denotes the observation data and θ denotes the model parameter which is considered
as a random variable or a random vector. Based on Bayes’ theorem, the posterior probability
density for θ is

p(θ |d) ∝ p(d|θ)p(θ). (4)

Here, p(d|θ) is the likelihood distribution and p(θ) is the prior probability density. The
forward solver F gives predictions by solving parameterized partial differential equations
with numerical methods such as the finite element method.

3.1.1. Prior specification. When the model parameter θ is a spatially varying parameter, the
forward problem can be reformulated as

d ≈ F (f (x)), (5)

where x refers to the location and f (x) is the specific field of the spatially varying parameter,
i.e. θ = f (x). On a pre-determined sparse grid at level q, the parameter field can be
represented as a weighted sum of the basis functions for all collocation points in the sparse
grid from level 0 to q due to the hierarchical structure of the grid, that is

θ ≈ θq = fq(x) =
q∑

i=0

ki∑
j=1

wi
j · ai

j (x). (6)

Hence, our problem is reduced to the inference of the surpluses, wi
j . A simple non-informative

prior for the surpluses is the multivariate Gaussian distribution which assumes that the surpluses
are identically independently distributed as

wq |σw,q ∼ N
(
0, σ 2

w,qIk

)
, (7)

where wq is the vector of all surpluses up to level q for θq and Ik is an identity matrix. Suppose
the hyperparameter σ−2

w,q ∼ �(α0, β0); we can premarginalize the variance from equation (7)
and obtain the prior

p(wq) ∝ �
(
α0 + k

2

)
(
β0 + 1

2‖wq‖2
2

)α0+ k
2

, (8)

where k is the length of the vector wq .
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3.1.2. Likelihood. To evaluate the likelihood, the discrepancy between the forward solver
prediction and observation data should be estimated and modeled. Two primary sources of
error are considered in the modeling. One is the measurement noise ζ , which is generally
assumed to be an independent additive Gaussian random error with mean zero, i.e.

ζi ∼ N
(
0, σ 2

ζ

)
, (9)

where ζi is an element of the vector ζ . We postulate the following relationship:

d = F (θ) + ζ, (10)

i.e. the observation is obtained from accurate forward solver predictions plus measurement
noise.

The other source is the model error δ, or referred to as the approximation error, which
results from the inadequacy of the forward model to represent the real physical process
[25, 26]. To minimize this effect, the forward solver operates at a fixed fine scale in this work.
We restrict our focus on the part of the model error that results from the parameterization of
the spatially varying parameters.

With a sparse grid representation of the spatially varying parameter θ , the accurate
parameter field f (x) is transformed into a reduced approximative model described by
equation (6). This approximation error will propagate in the forward solver and result in
inaccurate predictions. Thus, the observation is formulated as

d = F (θ) + ζ

= F q(θq) + (F (θ) − F q(θq)) + ζ

= F q(θq) + δ + ζ, (11)

where q is the level of the sparse grid, and F q(θq) refers to the forward solver using the
approximate model θq for the spatially varying parameter θ . The model error is defined as
δ = F (θ) − F q(θq), the discrepancy of forward solver predictions using precise spatially
varying parameters and using an approximate model as in equation (6).

In Bayesian inference, the model error δ can be treated as a random field. A Markov
random field is employed as in [11]. The basic idea is that the model error at a particular
location is correlated with the model errors at neighboring locations. Suppose a random vector
e = δ + ζ ; we assume

e ∼ N (δ0, 	e), (12)

where δ0 = δq1 and the covariance matrix 	e is exponential formulated as

	e = σ 2
ζ I + κH(φ). (13)

The parameter σ 2
ζ represents the variance of the measurement error. H(φ) = {Hij (φ)} where

Hij (φ) = exp
( − ||si−sj ||

φ

)
and ||si − sj || is the Euclidean distance between locations si and

sj. This is a measure of the magnitude of spatial dependence. κ and φ indicate the scale and
the range of the spatial dependence, respectively [27]. Thus, the likelihood for general data
modeling is

d|wq, δq,	e ∼ N (F q(wq) + δq1, 	e). (14)

To further reduce the dimensionality of the problem as well as the complexity of
computation, we also adopt a much simplified model. We simply assume that δ is a random
field (vector) with independent elements subject to a multivariate Gaussian distribution:

δ ∼ N
(
δ0, σ

2
δ I

)
. (15)
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Since ζ ∼ N (0, σ 2
ζ I) according to equation (9), e is also subject to a Gaussian distribution

e ∼ N (δ0, 	e) where 	e = (
σ 2

δ + σ 2
ζ

)
I. Thus, the likelihood is simply

d|wq, δq, σe ∼ N
(
F q(wq) + δq1, σ 2

e I
)
, (16)

where σ 2
e = σ 2

δ + σ 2
ζ . In this model, a gamma distribution �(α1, β1) is taken for σ−2

e . By
premarginalization, the unknown variance can be integrated out. The likelihood function is
simply

p(d|wq, δq) ∝ �
(
α1 + m

2

)(
β1 + 1

2‖d − F q(wq) − δq1‖2
2

)α1+ m
2
, (17)

where m is the number of observation data. In the following sections, we refer to the former
model as model I and to the latter one as model II .

3.1.3. Complete Bayesian model. Consider a pre-determined sparse grid at level q and let
ψq = {wq, δq, σζ , κ, φ} denote the vector containing all unknown parameters of the Bayesian
model on this grid. The prior for the hyperparameter δq is taken to be δq ∼ N (0, σδq

).
A gamma distribution �(ασζ

, βσζ
) is chosen as the prior for σ−2

ζ . Since κ > 0, φ > 0,
two gamma distributions �(ακ, βκ) and �(αφ, βφ) are adopted as priors of κ−1 and φ−1,
respectively. Combining the priors for surpluses (equation (8)) and hyperparameters and the
likelihood from equation (14), the posterior distribution for model I is

πq(ψq) = p(ψq |d) ∝ p(d|wq, δq)p(wq)p(δq)p(σζ )p(κ)p(φ). (18)

The posterior distribution for model II with the likelihood from equation (17) is similar except
that the hyperparameters σζ , κ, φ are removed.

3.2. Exploring the posterior state space

The Bayesian posterior distribution derived in the previous section is in general analytically
intractable. Standard MCMC methods, e.g. Metropolis–Hastings (MH) sampler and Gibbs
sampler, have been extensively used for such problems and their versatility and power have
been proved in practical applications. However, the Markov chains might be easily trapped
by local modes and long mixing times may be required. Moreover, MCMC methods estimate
all unknown parameters in the Bayesian model simultaneously. This is not suitable for the
hierarchical multiscale Bayesian model.

In order to bridge the gap between scales and explore multi-modal posteriors efficiently,
a SMC method is employed [17, 19, 20, 28]. First, the idea of annealing/tempering is
introduced. Given the target posterior distribution in equation (18), a sequence of auxiliary
distributions {π0, . . . , πn} is proposed to move smoothly from a tractable distribution π0 to
the target distribution πn ≡ πq(ψq). We adopt the following auxiliary distributions:

πt(ψq) ∝ Lγt (ψq |d)p(ψq), (19)

where t = 0, 1, . . . , n and 0 = γ0 < γ1 < · · · < γn = 1 are tempering parameters. Here,
L(ψq |d) is the likelihood function, p(ψq) is the prior distribution and γt serves as the power
exponent of the likelihood function.

The SMC method takes samples from such a sequence of probability distributions
based on importance sampling and resampling techniques and constructs a sequential
Bayesian inference. At step t, the basic idea is to obtain a large collection of N

6



Inverse Problems 27 (2011) 105004 J Wan and N Zabaras

0.5

0 1

0.25 0.75

0.125 0.375 0.625 0.875

Figure 2. One-dimensional tree-like structure of the sparse grid.

refine
refine

Level 1 Level 2

refine

4 4 3 4 6
0 0 1 1
1 1

1
k k

k

w a w aθ
=

= + ∑ 0 0 1 1 2 2
1 1

1 1
k k k k

k k

w a w a w aθ
= =

= + +∑ ∑ 0 0 1 1 2 2
1 1

1 1
k k k k

k k

w a w a w aθ
= =

= + +∑ ∑

Figure 3. An example of refining the sparse grid in a two-dimensional domain.

Level 1 Level 2Level 1 Level 2

Figure 4. A hierarchical representation of the spatially varying parameter on different scales.
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Figure 5. A hierarchical inference by taking the posterior p(wq,l−1|d) as the prior on a refined
grid.

weighted random samples
{
ψ

(i)
q,t , �

(i)
t

}
(i = 1, . . . , N) (also referred to as particles)

whose empirical distribution converges asymptotically to the current target distribution
πt . Each particle can be considered as a possible configuration of the system’s
state [2] with an importance weight.

According to equation (19), it is easy to sample directly from π0, the prior distribution, at
the initial step. The importance sampling technique is performed sequentially to the auxiliary
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distributions, which is called the sequential importance sampling (SIS) [17]. In this work, we
move these particles using a predetermined Markov transition kernel [19]. Suppose that at
step t − 1 we have N samples {ψ(i)

q,t−1} distributed in ηt−1. A Markov transition kernel Kt with
invariant distribution πt is proposed and new samples are marginally distributed as

ηt (ψ
′
q) =

∫
ηt−1(ψq)Kt(ψq, ψ

′
q)dψq. (20)

We use the MH kernel with invariant distribution πt based on a random walker sampler to move
the particles ψ

(i)
q,t−1. The wq, δq, σζ , κ, φ in the random vector ψq are updated individually

via a MH kernel with a normal random walk proposal.
The importance weight ω(i) estimates the discrepancy between the proposal distribution

ηt (ψq) and the current auxiliary distribution πt(ψq). Using the MCMC transition kernel, a
recursive form for the calculation of the importance weight is [19]

ω
(i)
t = ω

(i)
t−1

πt

(
ψ

(i)
q,t−1

)
πt−1

(
ψ

(i)
q,t−1

) . (21)
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It is inevitable that the SIS algorithm will degenerate and the variance of the importance
weights stochastically will increase with t [29, 30]. We measure the degeneracy using the
effective sample size (ESS) calculated from the normalized importance weights [30] as

ESS =
(

N∑
i=1

(�(i))2

)−1

. (22)

We define a threshold ESSmin = ξN (ξ < 1). If ESS < ESSmin, we carry out resampling to
relieve the degeneracy of the algorithm. The simplest approach is the multinomial resampling
which draws N new samples from {ψ(i)

q,t }i=1:N according to the corresponding normalized
weights {�(i)}i=1:N [19, 31]. After resampling, we obtain N weighted particles for the target
posterior distribution πn(ψq). Obviously, the SMC method is directly parallelizable.
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A summary of the MH kernel with a random walker sampler and of the SMC algorithm
is given below in algorithms I and II, respectively.

Algorithm I: Update of wq : MH kernel with a random walker proposal.

(i) Sample u ∼ U(0, 1).
(ii) Sample w̃q ∼ N (w(i)

q,t−1, σ
2
m).

(iii) If u < min{1,
πt (w̃q )

πt (w(i)
q,t−1)

}, set w(i)
q,t = w̃q .

(iv) Else set w(i)
q,t = w(i)

q,t−1.

Algorithm II: SMC algorithm.

(i) Initialization: for i = 1, . . . , N , sample X
(i)
0 ∼ π0(x) and set the importance weight

ω0(ψ
(i)
q,0) = 1

N
.

(ii) Updating: at time t, for i = 1, . . . , N , sample ψ
(i)
q,t ∼ Kt(ψ

(i)
q,t−1, ·) and set the

importance weight according to equation (21). Then, normalize the importance weight

by �
(i)
t = ω

(i)
t∑N

k=1 ω
(i)
k

.

(iii) Resampling: Calculate the ESS by equation (22). If ESS < ESSmin, resample the particles
{ψ(i)

q,1:n,�
(i)
n } according to {�(i)

n } to obtain a new population {ψ(i)
q,1:n, 1/N}.

(iv) Repeat the above steps until t = n, i.e. the particles are distributed in the last distribution
in the sequence.

4. Hierarchical Bayesian model

In the earlier sections, we defined the standard sparse grid on various levels of resolution.
Given a sparse grid, the spatially varying parameter can be represented by the basis functions
associated with the collocation points. Then the unknown surpluses are treated as random
variables and a Bayesian model can be constructed to make inference from the observation
data. Based on the one-scale Bayesian model on a single grid, we propose a hierarchical,
multiscale Bayesian model in this section. A set of sparse grids from coarse to fine scales
is constructed through adaptive refinement. On each grid, a one-scale Bayesian model is

10
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Figure 11. Posterior means estimated on three levels of the sparse grid (model I).

defined. Due to the hierarchical structure of the collocation points, a sequential estimation of
the surpluses can be performed from coarse to fine scales. Only part of the surpluses need to
be estimated on a certain grid, which significantly reduces the dimensionality of the inverse
problem. Also, the surpluses can serve as an indicator of the smoothness of the parameter field.
More support nodes will be added on non-smooth regions and rapid changes in the parameter
field can be effectively captured. In this way, an optimal choice of the basis functions can be
achieved.

4.1. Adaptive sparse grid

For the Newton–Cotes sparse grid at level q, the set of points can be obtained by refining
the grid of level q − 1 in a principled way. In fact, the 1D equidistant points of the sparse
grid can be considered as a tree-like data structure as shown in figure 2. We can consider the
interpolation level of a grid point m as the depth of the tree. We denote the father of a grid
point as F(m), where the father of the root 0.5 is itself, i.e. F(0.5) = 0.5. There are two
sons for each grid point in each dimension. For a grid point in an N-dimensional space (here
N = 1, 2, 3 for spatial fields), there are 2N sons. The sons are also the neighbor points of the
father. The neighbor points are just the support nodes of the hierarchical basis functions in
the next interpolation level. By adding the neighbor points, we actually add the support nodes
from the next interpolation level. Therefore, we refine the grid locally while not violating the
developments of the Smolyak algorithm [10].

In this way, a set of intermediate grids can be obtained between two standard levels of
sparse grid. Figure 3 presents a 2D example in which the standard sparse grid at level 2 is
constructed from the grid at level 1 by pointwise refinement. We arbitrarily pick up a point at
level 1 and add its 2N neighbor points to the sparse grid to obtain a finer, intermediate grid.
This procedure continues until we go through all collocation points that belong to the level 1
sparse grid. Since it is possible that the neighbors of one point have already been generated by
other points, the difference in the number of collocation points of two successive intermediate
grids is no more than 2N , e.g. four in a 2D case. Each intermediate grid provides a set of
basis functions for parameterizing the spatially varying parameter. Rather than working on the
standard sparse grid, we define Bayesian models on intermediate grids and make sequential
inference about the surpluses. More details will be given in the next section.

Furthermore, an adaptive refinement strategy can be used to reduce the collocation points
on the sparse grid and thus the dimensionality of the inverse problem. In fact, the hierarchical
surplus is a natural candidate for detecting non-smooth regions [16]. Here, the basic idea
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Figure 12. Posterior means estimated on three levels of the sparse grid (model II ).

for adaptivity is to use the posterior mean of hierarchical surpluses as an error indicator to
detect the smoothness of the spatially varying parameter field estimated on the current grid.
We only refine the hierarchical basis functions ai

j whose magnitude of the surplus satisfies
|wi

j | � ε. If the criterion is satisfied, the 2N neighbor points are added into the current sparse
grid. Otherwise, we assume that the local region is smooth enough and further refinement on
this basis is not required. With ε > 0 the parameter that controls the adaptive refinement, we
introduce algorithm III as follows:

Algorithm III : Adaptive sparse grid representation of the unknown parameter.

repeat

1. Set the initial level of sparse grid as q and construct a standard sparse grid.

Construct a full Bayesian model on this level and infer all the surpluses from observation

data (section 3).

2. Calculate the posterior mean of the surpluses.

3. Put the collocation points with surpluses
∣∣wi

j

∣∣ > ε in the active node set which denotes

the set of points whose ‘sons′ would be added to refine the original grid.

while the active node set is not empty do

(a) Pick up a point and add its 2N neighbor points to the sparse grid. An intermediate

grid is obtained.

(b) Construct a full Bayesian model and infer all the surpluses at the current grid.

(c) Remove the point from the active node set.

end while

4. Set q = q + 1.

5. Place all newly added collocation points into the empty active node set

until q = qmax or all the points in the active node set have surpluses
∣∣wi

j

∣∣ < ε , i.e. the

refinement of the grid terminates.

4.2. Hierarchical Bayesian inference

The hierarchically structured sparse grid provides a multiscale representation of the spatially
varying parameter (figure 4). Once a grid is defined, we can construct a Bayesian model for the
full surpluses and estimate them from observation data. In section 3.2, the SMC method was
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Figure 13. Empirical pdfs of κ (left) and φ (right) at different levels of the sparse grid.
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Table 1. Posterior mean of the model errors δ
(1)
q , δ

(2)
q and true values δ�

q .

Level 1 Level 2 Level 3

δ(1)
q 0.187 0.0281 0.0099

δ(2)
q 0.113 0.0205 0.0116

δ�
q 0.0821 0.0184 0.00846

used to explore the posterior distribution on a single grid. In this section, we propose a strategy
that bridges the estimation of surpluses on different scales. As a result, the dimensionality of
the inverse problem is further reduced and informative priors are developed on a fine grid by
incorporating the information from the posterior at the coarser grid.

Consider a sparse grid indexed by (q, l) where l denotes the lth intermediate grid between
levels q and q + 1. Due to the nested fashion of the grid, the collocation points are composed
of two parts: the inherited points from the immediate coarser grid and the new points obtained
by refinement. Thus, the full surpluses can be written as

wq,l = {wq,l−1,w
�
q,l}, (23)
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Table 2. Posterior mean of the model errors δ
(1)
q , δ

(2)
q and true values δ�

q .

Level 1 Level 2 Level 3 Level 4

δ(1)
q −0.870 −0.0931 −0.0154 −0.0073

δ(2)
q −0.621 −0.0710 −0.0215 −0.0103

δ�
q −0.734 −0.0807 −0.0174 −0.00862

where wq,l−1 is a vector of surpluses which have been estimated on the coarse grid and
w�

q,l is a vector of new surpluses in the current grid. In the one-scale Bayesian model in
section 3, a non-informative prior is assumed for the surpluses. However, the posterior
estimation of wq,l−1 on the coarse grid (q, l − 1) provides plenty of information for the re-
estimation of the surpluses on grid (q, l). In fact, in a direct sparse grid interpolation at level
q, we keep the surpluses estimated from levels 0 to q − 1 and only estimate the surpluses of
new collocation points at level q [15, 16]. Now the prior for wq,l is defined as

p(wq,l) = p(wq,l−1)p(w�
q,l) ∝ p(wq,l−1|d)p(w�

q,l), (24)

where a multivariate Gaussian distribution is assumed for the prior p(w�
q,l), i.e. p(w�

q,l) ∼
N (0, σ 2

w,qlI). The posterior distribution p(wq,l−1|d) at the coarse grid (q, l − 1) is taken
as the prior. The samples from the posterior are directly used as the samples from the
prior p(wq,l−1) at the current grid. This hierarchical inference strategy is depicted in
figure 5.

For the surpluses from points of the previous levels of interpolation, wq,l−1, not all
elements need to be re-estimated on the grid (q, l). When a surplus satisfies |wi

j | < ε, no
re-estimation is required since the corresponding basis function makes negligible contribution
to the interpolation. For other surpluses, if the posterior mean after re-estimation is close to
that before re-estimation, no further re-estimation is required. In this study, we use the same ε

as a criterion to determine convergence. After we finish estimating the surpluses on the current
grid, the adaptive refinement strategy introduced in algorithm III is carried out to refine the
grid. Then, the hierarchical Bayesian inference is performed on the finer grid.
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Figure 16. Posterior means estimated on four levels of the sparse grid (model I).

5. Numerical examples

5.1. Problem definition

We consider the nonlinear inverse problem of estimating the permeability field in flow in
porous media. First, a physical model is built for corner-to-corner flow in a 2D unit square
domain D = [0, 1]2 [10, 32]. The injection and production wells are located in diagonally
opposite vertices of the grid (figure 6).

The governing equations for the flow velocity and pressure are

∇ · u(x) = f (x), (25)

u(x) = −k(x)∇p(x), (26)

where f (x) is the source/sink term, u is the velocity given by Darcy’s law and p is the
pressure. An isotropic permeability field is assumed and denoted by k(x). All boundaries are
no-flow boundaries.
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Figure 20. Posterior mean of log-permeability estimation by MCMC.

In the inverse problem of interest, the permeability field is the unknown parameter to
be inferred from flow or pressure data at finite number of sensor locations. A mixed finite
element method is used to obtain the numerical solution on a 32 × 32 grid. The observation
data are generated from the numerical solutions by adding simulated noises.

To keep the permeability non-negative, we will treat the logarithm of the permeability,
log(k), as the main unknown of the inverse problem. N = 1200 particles are employed in the
implementation of the SMC algorithm. The threshold of ESS is set to be ESSmin = 0.85N . A
linear cooling schedule is selected for γt in equation (19). For 1500 time steps, the sequence
{γ0, . . . , γ1500} increases uniformly from 0 to 1. We take the maximum level of sparse
grid qmax = 5 and the parameter for the adaptive refinement ε = 0.05 (in section 4.1). The
hyperparameters used in the prior and likelihood are α0 = 0.1, β0 = 10, α1 = 0.01, β1 = 100,
ασζ

= 0.1, βσζ
= 10, ακ = 0.01, βκ = 100, αφ = 0.01, βφ = 100. The initial values for the

unknown surpluses are generated from the priors, while the initial values for the mean of the
model error vary with the level of the sparse grid.
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5.1.1. Example 1. In the first example, we consider a simple permeability field of the
following form [9, 10]:

log k(x, y) = 2(x − 0.5) + 2(y − 0.5). (27)

We apply a one-scale Bayesian inference to estimate the permeability. The objective of this
test example is to examine the efficiency of sparse grid representation as well as the SMC
algorithm proposed. For the representation of smooth functions, the sparse grid method is
superior since it requires a small number of basis functions. In this example, the sparse grid of
level 1 with only five collocation points is capable of representing the log-permeability field
exactly. Thus, we make the inference on this sparse grid and the model error is not taken into
account. The pressure is measured at a 5 × 5 evenly distributed sensor network and examine
two cases with 2% and 5% relative noise level.

Posterior quantiles of the log-permeability inferred from the two datasets are plotted in
figures 8 and 9. It is seen that the basic Bayesian framework based on the sparse grid and
SMC provides rather good estimates of such a smooth permeability field. When the level of
measurement noise is reduced, the inferred estimates are improved. The same problem was
studied using MCMC in [10] where the permeability field was approximated by Gaussian
kernels. Twenty five kernels were used to provide reasonable estimates. To make sure the
Markov chain converges, 50 000 iterations were carried out. In this work, much fewer basis
functions are required for a good representation of the permeability field. Besides, the particles
can run in parallel, each with 1500 MCMC updates. Clearly, this approach largely reduces
the computation cost.
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Figure 22. Posterior means estimated on the standard sparse grid from level 1 to level 5 (2% noise
in data).

Table 3. Posterior mean of the model error δq and true values δ�
q (2% noise).

Level 2 Level 3 Level 4 Level 5

δq −0.189 −0.155 −0.0632 −0.0118
δ�
q −0.139 −0.132 −0.0514 −0.0133

Table 4. Posterior mean of the model error δq and true values δ�
q (5% noise).

Level 2 Level 3 Level 4 Level 5

δq −0.292 −0.279 −0.156 −0.0407
δ�
q −0.312 −0.253 −0.131 −0.0350

5.1.2. Example 2. In this example, the logarithm of the true permeability (figure 10) is
generated from a GP with a correlation function ρ(r) = exp(−r2) where r is the distance
between two locations. The pressure is measured at a 5×5 sensor network with 2% noise. The
initial values for the mean of the model error, δq , are set to be 2

2l % of the mean of observation
data, where l is the level of sparse grid interpolation.

Two models for the model error δ as discussed in section 3.1.2 are applied here. The
posterior means computed for different levels of the sparse grid are depicted in figures 11
and 12. For such a smooth permeability field, a sparse grid of level 2 is enough to provide
a good approximation and the Bayesian inference is close to the true permeability field. In
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table 1, the posterior means of the estimated model errors δ(1)
q and δ(2)

q corresponding to the
two models are compared with the true value δ�

q which is taken as the mean of the difference
between the observation data and those predicted by the approximate model F q . We can see
that both models give similar results except that model I gives better inference at the upper-
left corner of the permeability field. This can easily be understood because the dependence
among model errors at different locations is considered in model I. However, the evaluation of
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Figure 24. Posterior quantiles of the log-permeability (2% noise): 5% quantile (left) and 95%
quantile (right).

hyperparameters κ and φ in figure 13 shows that the spatial variance is restricted in a relatively
small range and scale, which implies small κH(φ) in equation (13). While intuitively the
model errors are correlated, the adaptivity of the sparse grid in the hierarchical Bayesian model
weakens the correlation. Suppose a location where the model error is large, more collocation
points would be added around it. As a result, the model error is somehow localized and there
is only weak correlation between model errors at different locations. In figure 14, the posterior
quantiles on level 3 obtained from the simplified model II are presented. This shows that even
when model errors are uncorrelated, we can still obtain reasonable inference from observation
data.

5.1.3. Example 3. In this example, the log-permeability field is generated based on a
variogram model using the software snesim [33]. The field is defined on a 32 × 32 grid with
a constant value of permeability in each element. The true log-permeability is plotted in
figure 15. The pressure is measured on a 5 × 5 sensor network with 2% noise. The initial
values for the mean of the model error, δq , are set as in example 2.

The multiscale Bayesian inference is performed on four levels of the sparse grid. The
posterior means with respect to the two models (model error) are depicted in figures 16 and
17. The estimated model errors are listed in table 2. It is seen that even on a coarse scale
(level 2), the main features of the true permeability are efficiently captured by the sparse
grid and correctly inferred from the limited observation data. The empirical pdfs of
hyperparameters κ and φ in model I are given in figure 18. As in example 2, the two parameters
indicate a weak correlation among model errors at different locations. The posterior quantiles
on level 4 obtained from model II are shown in figure 19.

In examples 2 and 3, good estimates can be obtained at a relatively coarse level of
resolution. However, due to the high nonlinearity of the forward model, the forward problem
is multi-modal and the standard MCMC performs poorly in these cases. For demonstration,
the MH algorithm is directly applied for inference from accurate data (no noise included) on
the sparse grid at level 3. The initial values of surpluses are set to be zero. In figure 20, the
posterior mean after 50 000 iterations is plotted. We can see that the Markov chain is trapped
by a local mode.
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Figure 25. Posterior means estimated on the sparse grid with adaptive refinement (5% noise in
data).

5.1.4. Example 4. In this example, we apply the multiscale Bayesian inference to a
channelized permeability field. Channelized permeability is generally difficult to resolve
by conventional models, such as the GP model and the K–L (Karhunen–Loève) expansion.
Figure 21 gives four realizations of the channelized permeability created by the software
snesim. The log-permeability values are at 1 in black regions and 0 in white regions. In this
example, the permeability plotted in figure 21(b) is set to be the true permeability. The pressure
is measured on a 20×20 evenly distributed sensor network with 2% and 5% noise. The initial
values for the mean of the model error, δq , are set to be 5

2l % of the mean of observation data.
All of the permeability fields in this example are defined on 32 × 32 grid blocks. According
to the weak correlation among model errors shown in examples 2 and 3, we only consider the
simplified model II in this example.

At first, we make Bayesian inference on the standard sparse grid, i.e. no adaptive strategies
are used to refine the grid. The posterior means estimated from coarse to fine scales are
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Figure 26. Posterior quantiles of the log-permeability (5% noise): 5% quantile (left) and 95%
quantile (right).

presented in figure 22. The number of collocation points of the five levels are 5, 13, 29, 65 and
145. With the increase of collocation points, more local features of the true permeability field
are captured in the estimation. The black strip on the bottom is well captured after level 3.
However, although there is some trend for the black strip on the top-left corner on level 2, it
soon disappears on subsequent finer grids.

We next apply the adaptive strategy in the refinement of the sparse grid. In this case,
we start the inference on a standard sparse grid of level 2. The collocation points with
(posterior mean) surpluses whose magnitude is less than 0.05 are removed from the grid and
thus rejected from further refinement. As a result, the dimensionality of the inverse problem
is largely reduced. The estimated posterior means and corresponding adaptive sparse grids
are depicted in figure 23. The posterior quantiles on level 5 are shown in figure 24. The
estimated model errors are listed in table 3. We can see that the results are improved after
reducing the number of collocation points. The two black strips in the true permeability field
are captured. The unsatisfactory results from the standard sparse grid representation may
be due to overfitting. In this example, the true permeability field is composed of several
smooth segmentations. The discontinuity only occurs on the sharp edges. Although the
Smolyak algorithm has made general optimization in the choice of collocations points, there
are still redundant points for this specific problem. This may produce erroneous values on the
unnecessary points and thus affect the overall configuration of the estimated parameter field.
The same strategy is also applied to make inference from data with 5% noise (figures 25 and
26). It should come as no surprise that the estimates are not as good as those inferred from
data with a lower level of noise.

6. Conclusions

A multiscale Bayesian framework for the identification of spatially varying parameters was
introduced. The parameter field was discretized using a sparse grid and represented by local
basis functions associated with the collocation points. Based on the hierarchical property
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of the sparse grid, a multiscale representation of the parameter field was introduced and a
sequence of hierarchical Bayesian models from coarse to fine scales.

The sparse grid provides an effective way of finding an optimal choice of basis functions
to approximate the spatially varying parameter. The estimated coefficients (surpluses) of the
basis functions serve as indicators of the interpolation error. Accordingly, the refinement of
the grid can be performed in an adaptive way. This reduces the dimensionality of the inverse
problem and the computational cost of Bayesian inference. The adaptive refinement strategy
removes unimportant points from estimation, and thus avoids possible overfitting and leads
to improved results. The multiscale Bayesian framework proposed is a generalized way of
estimating unknown spatially varying parameters from observation data. Without any prior
information, the sparse grid method provides an effective strategy to construct an optimal
Bayesian model.

The SMC algorithm used here is directly parallelizable and well suited for multi-modal
problems. Using standard MCMC, the estimation of the surpluses can be trapped by many
local modes at coarse levels of resolution, which could result in failure of further inference
on fine scales. The samples from the posterior distributions at a coarse grid can provide prior
information for inference of the surpluses of these collocation points on a finer grid, which
helps to improve the quality of the calculations and to speed up the convergence rate.
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