Solving the binary black hole problem (again and again and again....)

Mark Hannam Cardiff University

000		Termin	al — bash — 7	'8×8		
TopSecretPentagonCluster	>					ŕ
TopSecretPentagonCluster	>					
TopSecretPentagonCluster	> mpirun	-np	10^6	bam	EntireParameterSpace.par &	
						0
						Ă

ACCGR Workshop Brown University, May 21 2011

Mark Hannam (Cardiff)

(日) (同) (日) (日)

Work in collaboration with...

- Parameswaran Ajith, Caltech
- Céline Cattoën, Alberta
- Sascha Husa, UIB
- Frank Ohme, AEI Potsdam
- Michael Pürrer, Vienna
- Patricia Schmidt, Cardiff

(日) (同) (日) (日)

Science from GW observations of BH mergers requires accurate theoretical waveforms across the entire parameter space

- The parameter space is large
- Modeling generic systems is poorly understood
- NR simulations are computationally expensive
- Length and accuracy requirements are unclear
- Even setting up the simulations is difficult...

伺下 くまト くまり

Problems from the outset: initial parameters

We need to determine initial parameters for low-eccentricity inspiral

Iterative procedures have been proposed

• works with quasi-equilibrium conformal-thin-sandwich excision data (SpEC)

[Pfeiffer, et. al., 2007; Mroue, et. al., 2010; Buonanno, et. al., 2010]

For puncture data, we have used PN-based methods

- First guess: use PN prediction for circular orbits (no inspiral). $e \sim 10^{-2}$ [Brügmann, et. al., PRD 77 024027 (2008)]
- Improvement: integrate full PN equations for inspiral. $e \sim 10^{-3}$ Husa, MDH, et. al., PRD 77, 044037 (2008)]

イロト イポト イヨト イヨト

Reducing eccentricity further

It is difficult to improve on $e \sim 0.005$ with a naive iterative procedure

- Numerical noise in the waveforms
- Gauge adjustments over the first orbit
- Long-term gauge effects in the puncture motion

A cleaner eccentricity measure can be made from the (filtered) GW phase

An iterative procedure can be based on full PN information

- 不同 ト イモト イモト

Reducing eccentricity further

See poster by Michael Pürrer

(日) (同) (三) (三)

How long do numerical waveforms need to be?

We can produce complete IMR waveforms by making PN + NR hybrids

- PN errors dominate the errors in these hybrids
- The longer the NR waveform, the better the hybrid

Without PN error estimates, how do we decide NR waveform lengths?

First attempt: make hybrids with several approximants and compare

MDH, Husa, Ohme, Ajith, PRD 82 (2010) 124052]

q = 1 nonspinning

æ

イロト イヨト イヨト イヨト

ACCGR Workshop, Brown University 7 / 17 In a search, optimize match calculation over all parameters (with only one NR waveform, can only optimize over mass)

But, we can compute matches without NR waveforms.

The fully optimized match depends on only

- the match between the two PN approximants
- the phase difference of the approximants at the matching frequency
- the ratio of the total power in the PN and NR parts
- the accumulated phase difference of the PN parts (when considering different parameters)

All of these are integrated quantities, that can be accurately modeled already by phenomenological waveforms!

イロト イポト イヨト イヨト

Length requirements

30 opt. mismatch [%] 25 20 15 10 5 0 10 20 30 40 50 \overline{M}/M_{\odot}

q = 4, nonspinning

- Nonspinning cases: < 10 orbits are acceptable up to q = 10
- Spinning cases: not so good
 - but higher order spin terms may improve the PN accuracy

Mark Hannam (Cardiff)

Parameter estimation

Parameter estimation errors depend on signal strength and waveform errors

The waveform errors are irrelevant if the waveforms are "indistinguishable"

- Several studies have considered length requirements for indistinguishability
- Bad news: we need 100s or 1000s of NR orbits

[Damour, et. al. (2010); MacDonald, et. al. (2010); Boyle (2011)]

Obvious conclusion: we need longer waveforms

(日) (同) (三) (三)

Parameter estimation

Parameter estimation errors depend on signal strength and waveform errors

The waveform errors are irrelevant if the waveforms are "indistinguishable"

- Several studies have considered length requirements for indistinguishability
- Bad news: we need 100s or 1000s of NR orbits

[Damour, et. al. (2010); MacDonald, et. al. (2010); Boyle (2011)]

Obvious conclusion: we need longer waveforms

Too bad: we won't have those waveforms by 2015!

The real question is: what will be the errors from waveforms with ~ 10 cycles?

イロト イポト イヨト イヨト

Parameter bias with hybrids

(q = 4 nonspinning)

Waveform models

The spinning-binary parameter space is vast:

- Binaries are characterized by
 - the mass ratio $\eta = m_1 m_2/(m_1 + m_2)^2$. (1 parameter)
 - the spins **S**₁ and **S**₂ of each BH. (6 parameters)
- Assume we find a model with a cubic dependence on the parameters
- Then we need at least $4^7 \approx 16,000$ simulations!
- And the physics now includes precession of the black-hole spins, and of the binary's orbital plane...

イロト イ団ト イヨト イヨト

Waveform models

The spinning-binary parameter space is vast:

- Binaries are characterized by
 - the mass ratio $\eta = m_1 m_2/(m_1 + m_2)^2$. (1 parameter)
 - the spins **S**₁ and **S**₂ of each BH. (6 parameters)
- Assume we find a model with a cubic dependence on the parameters
- Then we need at least $4^7 \approx 16,000$ simulations!
- And the physics now includes precession of the black-hole spins, and of the binary's orbital plane...

However...

- As a first approximation, describing non-precessing binaries may be enough
- Now we have to deal with only three parameters, η , S_1 , S_2 .
- Plus: the waveforms vary most strongly with the *total* spin, χ .
- Now we have only two parameters, η, χ .

イロト イポト イヨト イヨト

Features of the new spinning-binary model

What would we lose if we used only nonspinning waveforms in searches?

• FF < 0.8 suggests that over 50% of high-spin binaries may not be detected!

• Match pprox 0.3 means that parameters will be significantly biased

Mark Hannam (Cardiff)

ACCGR Workshop, Brown University 12 / 17

Features of the new spinning-binary model

Can we see any further with these new waveforms?

We may see high-spin binaries twice as far away as nonspinning binaries

This is excellent news: most astrophysical BHs may be highly spinning!

伺下 くヨト くヨト

Can this simple model also detect generic binaries?

A preliminary study:

- We do not have generic merger waveforms
- We can produce generic PN waveforms
- Perform a monte-carlo comparison of generic against non-precessing waveforms
- With matches above 0.965 we have:
 - 85% at *q* = 1
 - 62% at q = 4
 - 37% at q = 9.

We find that

- For comparable mass binaries, the non-precessing model finds most signals
- For larger mass ratios, a full generic model is needed

[Ajith, MDH, Husa, et al, arXiv:0909.2867, PRL, in press]

Eventually we have to face up to generic spins

If the spins are not (anti-)aligned with the orbital angular momentum

- The spin directions will evolve (precess)
- The orbital plane will also precess
- The resulting dynamics are complex

Consider

- *q* = 3
- $\chi_1 = 0$, $\chi_2 = 0.75$
- $\mathbf{S} \cdot \mathbf{L} = \mathbf{0}$
- A maximally precessing case

How can we possibly model such systems?

Precession of the orbital plane mixes up the mode structure

- The quadrupole mode is no longer clearly dominant
- Energy is distributed across all modes.
- A simple phenomenological ansatz looks to be out of the question...

BUT...

- Rotate frame of reference to maximize $\Psi_{4,22}$.
- Maximization is accurate to within fractions of a radian
- Locates direction of the orbital angular momentum
- Defines a unique "quadrupole aligned" waveform

(人間) トイヨト イヨト

How can we possibly model such systems?

Precession of the orbital plane mixes up the mode structure

- The quadrupole mode is no longer clearly dominant
- Energy is distributed across all modes.
- A simple phenomenological ansatz looks to be out of the question...

BUT...

It *is* possible to disentangle the complex motion And the mode structure can be made simpler

How can we possibly model such systems?

Non-precessing mode structure is retained

- q = 3 with **S** · **L** = 0 comparable to q = 3 nonspinning
- Waveform modeling may now be simplified

 $q = 3, \mathbf{S} \cdot \mathbf{L} = 0$

- How well does this extend to more general cases?
- How well do QA and non-precessing waveforms agree?

See the poster by Patricia Schmidt [Schmidt, et. al., arXiv:1012.2879]

Mark Hannam (Cardiff)

Spectral element methods (SEM)

(With Céline Cattoën)

- First test case: stationary 1+log trumpet solution of Schwarzschild
- Ideal test case: can treat each variable separately

Preliminary results:

Look at A_{xx} , which is badly discontinuous at the puncture.

Near the puncture,

SO

$$A_{xx} = A \frac{-2x^2 + y^2 + z^2}{r^2},$$

 $A_{xx}|_{y=z=0} = -2A$
 $A_{xx}|_{x=y=0} = A.$

Spectral element methods (SEM)

(With Céline Cattoën)

- First test case: stationary 1+log trumpet solution of Schwarzschild
- Ideal test case: can treat each variable separately

 A_{xx} near the puncture, with and without filtering:

Spectral element methods (SEM)

(With Céline Cattoën)

- First test case: stationary 1+log trumpet solution of Schwarzschild
- Ideal test case: can treat each variable separately

Exponential convergence is maintained away from the puncture

イロト イ団ト イヨト イヨト

By the time Advanced LIGO is operational

we won't have perfect waveform models

but acceptable models are feasible

How to produce those models

remains an open question