Simulating merging black holes with spins beyond the Bowen-York limit

Geoffrey Lovelace (Cornell) in collaboration with Mark A. Scheel & Béla Szilágyi (Caltech) see also arXiv:1010.2771

May 21, 2011

Outline

- Black hole spin
- Motivation
 - -Astrophysical
 - -Physical
- Challenges
 –Initial data
 - -Evolution
- Results
 - -Black-hole eccentricity, spin
 - -Gravitational waveforms
 - -Horizon vorticity
 - -Extremality & cosmic censorship

Black hole spin

- Dimensionless spin $\chi := \frac{S}{M^2} \quad \begin{array}{c} S = \text{spin angular} \\ M = \text{mass} \end{array}$
 - -Geometrized units: G = c = 1-Stationary black hole:
 - $0 \le \chi < 1$
 - Naked singularity if $\,\chi \geq 1\,$
- Spacetime geometry
 - -Nonspherical horizon
 - -Spacetime rotates: gyroscopes precess ("frame dragging")

Introduction

- Astrophysical motivation
 - -Black holes could have spins $\chi := \frac{S}{M^2} \sim 1$
 - Accretion models

e.g. $\chi \sim 0.998$: neglect magnetohydrodynamics - K. S. Thorne (1974) $\chi \sim 0.95$: include magnetohydrodynamics - S. L. Shapiro (2005)

- Observational evidence (uncertain)
 e.g. microquasar GRS 1915+105

 χ > 0.98
 J.E. McClintock et al (2006)
 χ ~ 0.7
 M. Middleton et al (2006)
 see also J. Blum et al (2009) & refs. therein
- -Predict gravitational waveforms from binary black holes (BBHs)
 - Calibrate analytic waveform models
 - -Stellar-mass (ground detectors)
 - -Supermassive (space detectors)
- -Final hole's mass, spin, recoil

Image courtesy wikipedia

Introduction

- Physical motivation
 - -Explore general relativity at its most extreme
 - Nonlinear behavior of strongly-warped spacetime *For details, see R. Owen et al (2011), cf. M. Scheel's talk this morning*
 - –E.g. vorticity ("twisting") and tendicity ("stretching/squeezing") on and above horizon
 - -Extremality & cosmic censorship
 - Stationary holes: naked singularity if $\chi \geq 1$
 - Superextremal dynamical black holes?

Initial data

 Must satisfy constraints MaxwellEinstein $\nabla \cdot E = 0$ $G_{nn} = 0$ $\nabla \cdot B = 0$ $G_{nj} = 0$

- -Conformally flat: $g_{ij} \propto f_{ij}$
 - E.g. Bowen-York data: solve analytically $G_{nj} = 0$ J. M. Bowen (1979), J. M. Bowen & J. W. York, Jr. (1980)
 - Can't make equilibrium spinning black holes
 Garat & Price (2000)
- Binaries: Spins $\chi < 0.93$ $\chi = 0.8$ *L. Rezzolla et al (2008)* $\chi = 0.9$ *P. Marronetti et al (2008)*

 $\chi = 0.925 \stackrel{S. Dain, C. O. Lousto,}{\& Y. Zlochower (2008)}$

 $\chi=0.85~$ M. Hannam et al (2010)

Initial data

 Must satisfy constraints

- -Superposed-Kerr-Schild GL, R. Owen, H. P. Pfeiffer, & T. Chu (2008)
 - Must solve all (coupled) constraint equations

Initial data

Evolution

- For high accuracy: spectral methods
 - -Require more resolution near merger

use spectral adaptive mesh refinement For details, cf. talk yesterday by B. Szilágyi

- Adjust resolution as needed
- -Need smooth, finite solution
 - Excise singularity
 - Grid coords. comove with holes
 - Map between grid & asymptotically inertial coords.

Figure courtesy Béla Szilágyi

Anti-aligned, equal mass BBH (spin=0.95)

Excision with high spins

- Excision surface
 - -Must be inside horizon
 - -No boundary condition (BC)
 - OK if all info goes down the hole: "only outgoing characteristic fields"
 - Control excision surface shape, velocity

E.g. wave equation

6350

Results

Waveforms

Real part of $(\ell, m) = (2, 2)$ mode Waves extracted at radius r/M = 100

Spin vs. time

× Boyle and Kesden (2008)

0

+ Buonanno, Kidder, and Lehner (2008)

Spin vs. time

6410 6410.4 6410.1 6410.2 6410.3 Time / Total Mass

Mass or

.2

Horizon vorticity

Rescaled for Ringdown

Spin Function AhC -0.153 -0.0767 0.00 0.0767 0.153

Movie courtesy Dave Kotfis

$\chi_A = \chi_B = +0.97 \mathbf{e}_z$

Time: 6414.01

Conclusion

Nearly extremal spins

-Astrophysical black holes may have spins ~ 1

- –Improved initial data: can simulate BBH with spins beyond the Bowen-York limit of $\chi \lesssim 0.93$
 - This talk: spins up to $\chi=0.97$
- Future work
 - -More simulations
 - Unequal masses, generic spin direction
 - Even higher spins
 - -Extract science from high-spin simulations

