Discontinuous Galerkin, Python, and GPUs:
the ‘hedge’ solver package

Andreas Klöckner

Courant Institute of Mathematical Sciences
New York University

May 22, 2011
Thanks

- Jan Hesthaven (Brown)
- Tim Warburton (Rice)
- Leslie Greengard (NYU)
- hedge, PyOpenCL, PyCUDA contributors
- Nvidia Corporation
Outline

1. Introduction
2. Hedge How-To
3. Under the Hood
4. Conclusions
Outline

1. Introduction
 - The Method
 - DG to Code

2. Hedge How-To

3. Under the Hood

4. Conclusions
Outline

1. Introduction
 - The Method
 - DG to Code
2. Hedge How-To
3. Under the Hood
4. Conclusions
Discontinuous Galerkin Method

Let $\Omega := \bigcup_i D_k \subset \mathbb{R}^d$.

Andreas Klöckner

DG, Python, and GPUs
Discontinuous Galerkin Method

Let $\Omega := \bigcup_i D_k \subset \mathbb{R}^d$.

Goal

Solve a conservation law on Ω:

$$u_t + \nabla \cdot F(u) = 0$$

Example

Maxwell's Equations: EM field: $E(x, t), H(x, t)$ on Ω governed by

$$\partial_t E - \frac{1}{\varepsilon} \nabla \times H = -j\varepsilon, \quad \partial_t H + \frac{1}{\mu} \nabla \times E = 0,$$

$$\nabla \cdot E = \rho \varepsilon, \quad \nabla \cdot H = 0.$$
Discontinuous Galerkin Method

Let $\Omega := \bigcup_i D_k \subset \mathbb{R}^d$.

Goal

Solve a conservation law on Ω:

$$u_t + \nabla \cdot F(u) = 0$$

Example

Maxwell’s Equations: EM field: $E(x, t), H(x, t)$ on Ω governed by

$$\partial_t E - \frac{1}{\varepsilon} \nabla \times H = -\frac{j}{\varepsilon}, \quad \partial_t H + \frac{1}{\mu} \nabla \times E = 0,$$

$$\nabla \cdot E = \frac{\rho}{\varepsilon}, \quad \nabla \cdot H = 0.$$
Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

\[
0 = \int_{D_k} u_t \varphi + [\nabla \cdot F(u)] \varphi \, dx \\
= \int_{D_k} u_t \varphi - F(u) \cdot \nabla \varphi \, dx + \int_{\partial D_k} (\hat{n} \cdot F)^* \varphi \, dS_x,
\]

Substitute in basis functions, introduce elementwise stiffness, mass, and surface mass matrices matrices S, M, M_A:

\[
\partial_t u^k = - \sum_\nu D^{\partial_\nu, k}[F(u^k)] + L^k[\hat{n} \cdot F - (\hat{n} \cdot F)^*]|_{A \subset \partial D_k}.
\]

For straight-sided simplicial elements:
Reduce D^{∂_ν} and L to reference matrices.
Nodal Field Representation

Computational representation of approximate fields:
Values at nodal points $\xi_{k\nu}$ on each tetrahedron D_k.
[Warp & Blend Lagrange Nodes: Warburton 06]

- Smaller dependency footprint of surface data ($O(N^d) \rightarrow O(N^{d-1})$)
- Modal operations more expensive (e.g. inner product, differentiation, filtering)

Node locations in 8th order unit tetrahedron
Outline

1. Introduction
 - The Method
 - DG to Code

2. Hedge How-To

3. Under the Hood

4. Conclusions
Step 1: Matlab DG

- ~ 1000 lines of Matlab
- Documented by textbook
- Focus: Simplicity, exposition
- CPU, 1,2,(3)D
% evaluate fluxes
ndotdE = nx.*dEx+ny.*dEy;
fluxEx = -ny.*dHz + alpha*(ndotdE.*nx−dEx);
fluxEy = nx.*dHz + alpha*(ndotdE.*ny−dEy);
fluxEx(mapB) = -ny(mapB).*dHz(mapB) + ...
 (ndotdE(mapB).*nx(mapB)−dEx(mapB));
fluxEy(mapB) = nx(mapB).*dHz(mapB) + ...
 (ndotdE(mapB).*ny(mapB)−dEy(mapB));
fluxHz = nx.*dEy − ny.*dEx − alpha*dHz;

% local derivatives of fields
[dHzdx,dHzdy] = Grad2D(Hz);
[dExdx,dExdy] = Grad2D(Ex);
[dEydx,dEydy] = Grad2D(Ey);

% compute right hand sides of the PDE's
rhsEx = dHzdy + LIFT*(Fscale.*fluxEx)/2.0;
rhsEy = −dHzdx + LIFT*(Fscale.*fluxEy)/2.0;
rhsHz = −dEydx+dExdy + LIFT*(Fscale.*fluxHz)/2.0;
Step 2: Expository Python+GPU DG “Pydgeon”

- ~ 1500 lines of Python, OpenCL C
- Very similar to Matlab code
- Documented by article in GCG Vol. 2
- Focus: Simplicity, exposition, perf.
- CPU/GPU, 2D
- Live visualization
- Maxwell only (so far) with PEC BC
```c
float dHx=0, dHy=0, dEz=0;
dHx = 0.5f*Fsc*( g.Hx[idP] - g.Hx[idM]);
dHy = 0.5f*Fsc*( g.Hy[idP] - g.Hy[idM]);
dEz = 0.5f*Fsc*(Bsc*g.Ez[idP] - g.Ez[idM]);

const float ndotdH = nx*dHx + ny*dHy;

l_fluxHx[n] = -ny*dEz + dHx - ndotdH*nx;
l_fluxHy[n] = nx*dEz + dHy - ndotdH*ny;
l_fluxEz[n] = nx*dHy - ny*dHx + dEz;

barrier (CLK_LOCAL_MEM_FENCE);
// ...
for (m=0;m < p.Nfaces*p.Nfp; ++m)
{
    float4 L = read_imagef(i_LIFT, samp, (int2)(col, n));
    ++col;

    rhsHx += L.x*l_fluxHx[m];
rhsHy += L.x*l_fluxHy[m];
rhsEz += L.x*l_fluxEz[m];
}
```
Step 3: Production Python+GPU DG “hedge”

- ~ 20,000 lines of Python
- Dedicated documentation, wiki, mailing list
- Focus: features, performance, ease of use
- Self-tuning CPU/GPU+MPI, nD
- Nonlinear problems: quadrature, shock capture
- General PDEs (nD Wave, nD CNS, nD Maxwell’s, …), general BCs (periodic, …)
- SP/DP+Complex
- Multi-rate time integration
Step 3: Production Python+GPU DG “hedge”

```python
flux = - join_fields(
    dot(v.avg, normal)
    - 0.5*(u.int-u.ext),
    u.avg * normal
    - 0.5*(normal
        * dot(normal, v.int-v.ext)))

op_template = InverseMassOperator()(join_fields(
    -dot(make_stiffness_t(d), v),
    -(make_stiffness_t(d)*u)
)
    - (flux_op(w) + flux_op(
            BoundaryPair(
                w, dir_bc, TAG_ALL))))
```
Outline

1. Introduction
2. Hedge How-To
3. Under the Hood
4. Conclusions
Anatomy of a Driver File

1. Generate mesh
 - MeshPy: Direct interfaces to Triangle, TetGen, Gmsh

2. Set up discretization
 - Given: exec. context, mesh, polynomial order, quad. order

3. Create optemplate
 - Given: parameters (e.g. dimension, boundary tags)

4. Compile optemplate
 - Given: optemplate, discretization. Yields: function

5. Set up time integration
 - Available: Many RK, IMEX, SSP, Adaptive, DUMKA

6. Main loop, including
 - Time stepper calls (calls compiled op. func)
 - Visualization
Operator Representation in Hedge

- Named Variables
 - `Variable`, `ScalarParameter`, `make_vector_field(name, dim)`
- Arithmetic, custom functions, conditionals
 - `+`, `-`, `*`, `/`, `IfPositive(cond, then, else)`
- Volume bilinear forms
 - `make_nabla()`, `MassOperator()`, `InverseMassOperator()`...
- Surface bilinear forms ("fluxes") (next slide)
- Interpolation to quadrature points
 - `QuadratureGridUpsampler(tag)`, ...
- Geometry information (normals, jacobians, ...)
Operator Representation in Hedge

- **Named Variables**
 - Variable, ScalarParameter, make_vector_field(name, dim)
- **Arithmetic, custom functions, conditionals**
 - +, -, *, /, IfPositive(cond, then, else)
- **Volume bilinear forms**
 - make_nabla()(x), MassOperator()(x), InverseMassOperator()(x), ...
- **Surface bilinear forms** ("fluxes") (next slide)
- **Interpolation to quadrature points**
 - QuadratureGridUpsampler(tag)(x)
- **Geometry information** (normals, jacobians, ...)
- **Common subexpression tags**
 - make common subexpression(x, name)

Entire optemplate expressed in terms of scalar fields.

Vector of scalar expressions for PDE systems.
Different (numbered!) scalar placeholders

- FluxVectorPlaceholder(dim)
- .int, .ext, .avg.
- Refers to arguments from optemplate (outer level) by number

Yields ‘flux operator’ which is usable in optemplate.

A flux operator can be applied to

- volume terms
- BoundaryPair(tag, vol_term, bdry_term)

in optemplate (outer level).

Typically: Same flux for boundary and volume.
Specification Example: Wave equation

d = dimensions

w = FluxVectorPlaceholder(1+d)
u = w[0]
v = w[1:]
normal = make_normal(d)

flux = - join_fields (
dot(v.avg, normal)
- 0.5*(u.int - u.ext),

u.avg * normal
- 0.5*(normal
* dot(normal, v.int - v.ext)))

w = make_vector_field("w", d+1)
u = w[0]
v = w[1:]

dir_u = BoundarizeOperator(TAG_ALL)(u)
dir_v = BoundarizeOperator(TAG_ALL)(v)
dir_bc = join_fields (-dir_u, dir_v)

operator assembly
flux_op = get_flux_operator (flux)

op_template = InverseMassOperator()(
join_fields (
- dot(make_stiffness_t(d), v),
-(make_stiffness_t(d)*u)
)
- (flux_op(w) + flux_op(BoundaryPair(
w, dir_bc, TAG_ALL))))
\[u^* = \hat{n} \cdot \{v\} - \frac{1}{2}(u^- - u^+), \]
\[v^* = \hat{n} \left(\{u\} - \frac{\hat{n}}{2} \cdot (v^- - v^+) \right) \]

\[\partial_t u + \nabla_x \cdot v = 0, \]
\[\partial_t v + \nabla_x u = 0 \]
Specification Example: Wave equation

d = dimensions
w = FluxVectorPlaceholder(1+d)
u = w[0]
v = w[1:]
normal = make_normal(d)

\[
\begin{align*}
 u^* &= \hat{n} \cdot \{v\} - \frac{1}{2}(u^- - u^+), \\
 v^* &= \hat{n} \left(\{u\} - \frac{\hat{n}}{2} \cdot (v^- - v^+) \right)
\end{align*}
\]

\[
\text{flux} = - \text{join_fields} (\\
 \text{dot}(v.\text{avg}, \text{normal}) \\
 - 0.5*(u.\text{int} - u.\text{ext}), \\
 u.\text{avg} * \text{normal} \\
 - 0.5*(\text{normal} * \text{dot}(\text{normal}, v.\text{int} - v.\text{ext})))
\]

w = make_vector_field("w", d-1)
u = w[0]
v = w[1:]

Goal: Want to match or beat handwritten code for operators like this.
Boundary Tags

Boundary tags: Symbolic names for sets of boundary faces

Can be anything, usually strings.

hedgemesh.

{TAG_NONE,TAG_ALL} always defined

∅ TAG_NONE

"inflow"

"wall"

"outflow"

TAG_ALL
Outline

1. Introduction
2. Hedge How-To
3. Under the Hood
 - RTCG Infrastructure
 - Optemplate Pipeline
4. Conclusions
Outline

1. Introduction
2. Hedge How-To
3. Under the Hood
 - RTCG Infrastructure
 - Optemplate Pipeline
4. Conclusions
How are High-Performance Codes constructed?

- “Traditional” Construction of High-Performance Codes:
 - C/C++/Fortran
 - Libraries

- “Alternative” Construction of High-Performance Codes:
 - Scripting for ‘brains’
 - Generated code on GPUs for ‘inner loops’

- Play to the strengths of each programming environment.
One example of a scripting language: Python

- Mature
- Large and active community
- Emphasizes readability
- Written in widely-portable C
- A ‘multi-paradigm’ language
- Rich ecosystem of sci-comp related software
What is OpenCL?

OpenCL (Open Computing Language) is an open, royalty-free standard for general purpose parallel programming across CPUs, GPUs and other processors. [OpenCL 1.1 spec]

- Device-neutral (Nv GPU, AMD GPU, Intel/AMD CPU)
- Vendor-neutral
- Comes with RTCG

Defines:
- Host-side programming interface (library)
- Device-side programming language (!)
What is OpenCL?

OpenCL (Open Computing Language) is an open, royalty-free standard for general purpose parallel programming across CPUs, GPUs and other processors. [OpenCL 1.1 spec]

- Device-neutral (Nv GPU, AMD GPU, Intel)
- Vendor-neutral
- Comes with RTCG

Big deal?

Defines:
- Host-side programming interface (library)
- Device-side programming language (!)
Why machine-generate code?

- Automated Tuning (cf. ATLAS, FFTW)
- Data types
- Specialize code for given problem
- Constants faster than variables (→ register pressure)
- Loop Unrolling
Why do Scripting for GPUs?

- GPUs are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput
 - complement each other
- CPU: largely restricted to control tasks (∼1000/sec)
 - Scripting fast enough
- Python + OpenCL = PyOpenCL
- Python + CUDA = PyCUDA
PyOpenCL, PyCUDA: Vital Information

- http://mathema.tician.de/software/pyopencl (or /pycuda)
- Complete documentation
- MIT License
- Arrays, Elementwise op., Reduction, Scan
- Compiler Cache, RAII, Error checking
- Require: numpy, Python 2.4+ (Win/OS X/Linux)
- Community: mailing list, wiki, add-on packages (FFT, scikits.cuda, . . .)
A taste of PyOpenCL

```python
import pyopencl as cl, numpy

a = numpy.random.rand(256**3).astype(numpy.float32)

ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

a_dev = cl.Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
cl.enqueue_write_buffer(queue, a_dev)

prg = cl.Program(ctx, '```
    __kernel void twice(__global float *a)
    {
        a[get_local_id(0)+get_local_size(0)*get_group_id(0)] *= 2;
    }
    ```').build()

prg.twice(queue, a.shape, (256,), a_dev)
```
A taste of PyOpenCL

```python
import pyopencl as cl, numpy

a = numpy.random.rand(256**3).astype(numpy.float32)

ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

a_dev = cl.Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
cl.enqueue_write_buffer(queue, a_dev)

prg = cl.Program(ctx, ""
 kernel void twice(
 __global float *a)
 { a[get_local_id(0)+get_local_size(0)*get_group_id(0)] *= 2; }""
""").build()

prg.twice(queue, a.shape, (256,), a_dev)
```

Compute kernel
PyOpenCL: Code Generation using Templates

```python
<%def name="chunk_for_with_tail(loop_var, start, chunk_size, end)" >
 uint $\{loop_var\} = $\{start\};
 while ($\{loop_var\} + $\{chunk_size\} < $\{end\})
 {
 $\{caller\.body(is_tail =False)\}
 $\{loop_var\} += $\{chunk_size\};
 }
 $\{caller\.body(is_tail =True)\}
</%def>

<%self: chunk_for_with_tail loop_var="isource_base" start="0" chunk_size="128" end="nsource" args="is_tail" >
 % if is_tail :
 if (isource_load < nsource)
 % endif
 % for i in range(dimensions):
 s_l$ \{i\}[lid] = s_g$\{i\}[isource_base + lid];
 % endfor
</%self: chunk_for_with_tail >
```
Outline

1. Introduction
2. Hedge How-To
3. Under the Hood
   - RTCG Infrastructure
   - Optemplate Pipeline
4. Conclusions
Tree Representations

Advantages:

- Simple
- Expressions naturally map to trees
  - Easy to build for user
- Good for ‘peephole’ rewriting
  - Computer Algebra uses trees

Problems:

- Redundant Subexpressions
- Many temporaries
- Not good for ‘global’ rewriting
Tree Representations

Advantages:

- Simple
- Expressions naturally map to trees
  - Easy to build for user
- Good for ‘peephole’ rewriting
  - Computer Algebra uses trees

Problems:

- Redundant Subexpressions
- Many temporaries
- Not good for ‘global’ rewriting

Why not ‘direct execution’?

- Prevents many optimizations
- Prevents information discovery
- Requested op. is a data structure
  - Can be built programmatically
What about Common Subexpressions?
What about Common Subexpressions?

- CSEs important to reduce rewrite complexity
- Use explicit CSE tagging rather than detection
  - Limits memory consumption
- How to realize reuse? later
Communication Insertion

Node 0

Node 1

Multiple neighbors: add more send/recv pairs

Scheduling?
Communication Insertion

Node 0

\[ + \]

- \text{Int. Flux}
  - \text{Vol } u
  - \text{Vol } v
- \text{Bdry. Flux}
  - \text{Fin. Recv.}
  - \text{Post Send, Recv.}
    - \text{Bdry } u
    - \text{Bdry } v

Node 1

\[ + \]

- \text{Bdry. Flux}
  - \text{Fin. Recv.}
  - \text{Post Send, Recv.}
    - \text{Bdry } v
    - \text{Bdry } u
- \text{Int. Flux}
  - \text{Vol } v
  - \text{Vol } u
Communication Insertion

Node 0

+----------------+-----------------+
Int.Flux	Bdry.Flux
Vol u	Vol v
	Fin. Recv.
	Post Send, Recv.
	Bdry u
	Bdry v

Node 1

+----------------+-----------------+
Bdry.Flux	Int.Flux
Vol v	Vol u
	Fin. Recv.
	Post Send, Recv.
	Bdry v
	Bdry u
Communication Insertion

- Multiple neighbors: add more send/recv pairs
- Scheduling?

Node 0:
- Int.Flux
  - Vol u
  - Vol v
  - Fin. Recv.
  - Bdry. Flux
  - Bdry u

Node 1:
- Bdry. Flux
- Int.Flux
- Vol v
- Vol u
- Fin. Recv.
Simple Optimizations

Simple optimizations:

- **Linearity:**
  \[ \partial_x(A) + \cdots + \partial_x(B) \rightarrow \partial_x(A + B) + \cdots \]

- **Associativity:**
  \[ M^{-1}(L(x)) \rightarrow (M^{-1}L)(x) \]

- **Associativity + Linearity:**
  \[ M^{-1}(\alpha L(x)) \rightarrow \alpha(M^{-1}L)(x) \]

User should not be burdened with these.

- Enables use of abstractions in operator building
Towards Execution

Already seen: Tree representation has disadvantages for execution.

Idea
Rewrite as a set of single static assignment instructions carrying dependency information.

Graph-based processing steps:

1. Build from tree
   - Assign variable names for node results
   - Realize CSEs reuse

2. Kernel fusion

3. Code generation

4. Scheduling
“Fusion”

Common for vector abstractions (e.g. `numpy`):
- Make temporary for result
- Load 2 (vector) operands, store 1, repeat

Issues:
- Redundant store/fetch traffic
  - No data reuse
- Little latency hiding (GPUs: in-order)
- Temporary churn

Idea
Joining instructions (vector ops, fluxes, derivatives) solves all these.
DAG for Wave Example

Andreas Klöckner
DG, Python, and GPUs
DAG for Compressible Navier-Stokes
Metaprogramming DG: Flux Terms

\[ 0 = \int_{D_k} u_t \varphi + [\nabla \cdot F(u)] \varphi \, dx - \int_{\partial D_k} [\hat{n} \cdot F - (\hat{n} \cdot F)^*] \varphi \, dS_x \]

Flux term
Metaprogramming DG: Flux Terms

\[ 0 = \int_{D_k} u_t \varphi + [\nabla \cdot F(u)] \varphi \, dx - \int_{\partial D_k} \left[ \hat{n} \cdot F - (\hat{n} \cdot F)^* \right] \varphi \, dS_x \]

Flux terms:

- vary by problem
- expression specified by user
- evaluated pointwise
Example: Fluxes for Maxwell’s Equations

\[ \hat{n} \cdot (F - F^*)_E := \frac{1}{2} [\hat{n} \times ([H] - \alpha \hat{n} \times [E])] \]
Metaprogramming DG: Flux Terms Example

**Example:** Fluxes for Maxwell’s Equations

\[
\hat{n} \cdot (F - F^*)_E := \frac{1}{2} \left[ \hat{n} \times (\llbracket H \rrbracket - \alpha \hat{n} \times \llbracket E \rrbracket) \right]
\]

**User writes:** Vectorial statement in math. notation

```
flux = 1/2*cross(normal, h.int-h.ext
 -alpha*cross(normal, e.int-e.ext))
```
**Example:** Fluxes for Maxwell’s Equations

\[
\hat{n} \cdot (F - F^*)_E := \frac{1}{2} [\hat{n} \times (\llbracket H \rrbracket - \alpha \hat{n} \times \llbracket E \rrbracket)]
\]

**We generate:** Scalar evaluator in C (6×)

```c
a_flux += (
 (((val_a_field5 − val_b_field5)* fpair −> normal[2]
 − (val_a_field4 − val_b_field4)* fpair −> normal[0])
 + val_a_field0 − val_b_field0)* fpair −> normal[0]
 − (((val_a_field4 − val_b_field4) * fpair −> normal[1]
 − (val_a_field1 − val_b_field1)* fpair −> normal[2])
 + val_a_field3 − val_b_field3) * fpair −> normal[1]
)* value_type (0.5);
```
Outline

1. Introduction
2. Hedge How-To
3. Under the Hood
4. Conclusions
Maxwell DG on Nvidia GTX280

![Bar chart showing performance (GFlops/s) for different polynomial orders (N) on GPU. The performance increases with increasing polynomial order.](image-url)
Memory Bandwidth on a GTX 280

Polynomial Order $N$

- $20$
- $40$
- $60$
- $80$
- $100$
- $120$
- $140$
- $160$
- $180$
- $200$

Global Memory Bandwidth [GB/s]

- Gather
- Lift
- Diff
- Assy.
- Peak

Andreas Klöckner  
DG, Python, and GPUs
Multiple GPUs via MPI: 16 GPUs vs. 64 CPUs

Flop Rates: 16 GPUs vs 64 CPU cores

Polynomial Order $N$

GFlops/s

GPU
CPU
GPU-DG in Double Precision

![GPU-DG: Double vs. Single Precision](image)

- **Single**
- **Double**
- **Ratio**

GFlops/s vs. Polynomial Order $N$
GPU DG Showcase

Eletromagnetism
GPU DG Showcase

Eletromagnetism

Poisson
GPU DG Showcase

Eletromagnetism

CFD
GPU DG Showcase

Eletromagnetism

CFD
Conclusions

- **hedge**: High-performance DG code with lots of features
  - MIT license
  - Comprehensive tests
  - Comes with “zoo of tools”
    - Logging
    - Visualization
- **Scripting + OpenCL/GPU**: Greater than the sum of its parts
  - Efficient, safe, easy, RTCG
- **Code generation enables efficient flexibility**
  - Without code gen, nothing in this talk would result in an efficient scheme
  - Question: How to process user input to obtain that efficient scheme?
Questions?

Thank you for your attention!

http://www.cims.nyu.edu/~kloeckner/
Image Credits

- Python logo: python.org
- Machine: flickr.com/13521837@N00
- C870 GPU: Nvidia Corp.
- Floppy disk: flickr.com/ethanhein
- Tree: sxc.hu/bertvthul
- Brick House: sxc.hu/Avolore
Outline

5 Automatic GPU Programming

6 Example 2: Boundary Integral Equations

7 DG Fluxes
Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
  - GPU programming requires complex tradeoffs
  - Tradeoffs require heuristics
  - Heuristics are fragile
Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
  - GPU programming requires complex tradeoffs
  - Tradeoffs require heuristics
  - Heuristics are fragile
- Another way: Dumb enumeration
  - Enumerate loop slicings
  - Enumerate prefetch options
  - Choose by running resulting code on actual hardware
Empirical GPU loop optimization:

```python
a, b, c, i, j, k = [var(s) for s in "abcijk"]
n = 500
k = make_loop_kernel([LoopDimension("i", n),
 LoopDimension("j", n),
 LoopDimension("k", n),
 [c[i+n*j], a[i+n*k]*b[k+n*j]])
```

gen_kwargs = {
    "min_threads": 128,
    "min_blocks": 32,
}

→ Ideal case: Finds 160 GF/s kernel without human intervention.
Loo.py Status

- **Limited scope:**
  - Require input/output separation
  - Kernels must be expressible using “loopy” model (i.e. indices decompose into “output” and “reduction”)
  - Enough for DG, LA, FD, ...
Loo.py Status

- Limited scope:
  - Require input/output separation
  - Kernels must be expressible using “loopy” model
    (i.e. indices decompose into “output” and “reduction”)
  - Enough for DG, LA, FD, . . .
- Kernel compilation limits trial rate
- Non-Goal: Peak performance
- Good results currently for dense linear algebra and (some) DG subkernels
Outline

5  Automatic GPU Programming

6  Example 2: Boundary Integral Equations

7  DG Fluxes
Integral Equations

Given a kernel, e.g. the *Helmholtz* kernel

\[ g_k(x) := \frac{1}{4\pi} \frac{e^{ik|x|}}{|x|}, \]

define *layer potential operators*

\[ S_k\sigma(x) := \int_{\Gamma} g_k(x - y)\sigma(y) \, dy \]

\[ D_{n,k}\sigma(x) := \int_{\Gamma} (n \cdot \nabla_y g_k(x - y))\sigma(y) \, dy \]

and their target derivatives \( \nabla_x S_k\sigma, \nabla_x D_{n,k}\sigma \).
User interface example

Magnetic field integral equation: \((x \in \Gamma)\)

\[-\frac{1}{2} \mathbf{J}_\Gamma(y) + \hat{n} \times \nabla_x \int_\Gamma g(x - y) \times \mathbf{J}_\Gamma(y) \, dy = -\hat{n} \times \mathbf{H}_{inc}(x)\]

RHS data

Code:

```python
curl_SJ = make_obj_array([sum(levi_civita ((l, m, n)) * IntGdTarget(k, J[n], m) for m in range(3) for n in range(3)) for l in range(3)])

mfie = -(1/2)*J + np.cross(make_normal(3), curl_SJ)
```

Andreas Klöckner
DG, Python, and GPUs
BIE Observations

- Very similar machinery works for FMM/BIE code
- Build in-memory representation
- Layer potentials can be evaluated on-/off-surface
  - Sometimes both within same expression
  - Infer target-bound operators (tree-level)
- E.g.: $S_k(u)$, $\nabla_x S_k(u)$ use same expansion, can be evaluated together
  - Find, join (insn-level)
Outline

5 Automatic GPU Programming

6 Example 2: Boundary Integral Equations

7 DG Fluxes