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Introduction

◮ Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system is a popular
formulation of the Einstein equations used for numerical evolutions

◮ Typical applications include binary black hole simulations

◮ We work with the Generalized BSSN (GBSSN) system1

What are the differences from traditional BSSN?

1David Brown, arXiv: 0501092
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Metric in ADM form

We may write the full spacetime metric metric as

ds2 = gαβdx
αdxβ = −(α2 − γijβ

iβj)dt2 + 2γijβ
jdtdx i + γijdx

idx j ,

Lapse α, shift βi , and spatial metric γij

◮ Conformal spatial metric (χ’s weight to be specified)

γij ≡ χ−1γ̄ij
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γij ≡ χ
−1
γ̄ij

Traditional BSSN requires γ̄ = 1, and so χ = γ−1/3 is of weight −2/3

◮ Thus the conformal metric is of weight −2/3
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γij ≡ χ
−1
γ̄ij

Traditional BSSN requires γ̄ = 1, and so χ = γ−1/3 is of weight −2/3

◮ Thus the conformal metric is of weight −2/3

Generalized BSSN introduces the scalar χ = (γ̄/γ)1/3

◮ Thus the conformal metric is a usual tensor

◮ Not necessarily unit determinant

◮ Must specify how the conformal metric’s determinant evolves

The GBSSN choice leads to... (a very small sampling)
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γij ≡ χ
−1
γ̄ij

Traditional BSSN requires γ̄ = 1, and so χ = γ−1/3 is of weight −2/3

◮ Thus the conformal metric is of weight −2/3

Generalized BSSN introduces the scalar χ = (γ̄/γ)1/3

◮ Thus the conformal metric is a usual tensor

◮ Not necessarily unit determinant

◮ Must specify how the conformal metric’s determinant evolves

The GBSSN choice leads to... (a very small sampling)

LnĀij =
1

3
ĀijLnlnγ̄ + KĀij − 2Āik Ā

k
j + χ

(

Rij −
1

α
DiDjα

)TF
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Preview of results

◮ To date BSSN-type codes are based on finite difference methods

◮ We present a high-order accurate discontinuous Galerkin scheme for
GBSSN

◮ We directly discretize the second order spatial operators. Fewer
variables and no extra constraints to worry about

We will specialize to spherically symmetric solutions with comments
towards a 3D solver
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The discontinuous Galerkin method: A hybrid of methods

◮ Spectral methods: approximate solutions by expanding them in a
basis

◮ Finite element methods: integrate the residual against a set of
test functions

◮ Finite volume methods: elements coupled via FV numerical fluxes,
when the basis functions are constants dG formally is a FV method

Will develop the dG method in 4 steps, with 1 step per slide
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DG method: space (step 1 of 4)

◮ Approximate physical domain Ω by subdomains Dk such that
Ω ∼ Ωh = ∪K

k=1D
k

◮ In general the grid is unstructured. We choose lines, triangles, and
tetrahedrons for 1D, 2D, and 3D respectively.
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DG method: solution (step 2 of 4)

◮ Local solution expanded in set of basis functions

x ∈ Dk : Ψk
h(x , t) =

N
∑

i=0

Ψk
h(xi , t)l

k
i (x)

◮ Polynomials span the space of polynomials of degree N on Dk .

◮ Global solution is a direct sum of local solutions

Ψh(x , t) =

K
⊕

k=1

Ψk
h(x , t)

◮ Solutions double valued along point, line, surface.
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DG method: residual (step 3 of 4)

◮ Consider a model PDE

LΨ = ∂tΨ+ ∂x f = 0,

where Ψ and f = f (Ψ) are scalars.

◮ Integrate the residual LΨh against all basis functions on Dk

∫

Dk

(LΨh) l
k
i (x)dx = 0 ∀i ∈ [0,N]

◮ We still must couple the subdomains Dk to one another...
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DG method: numerical flux (step 4 of 4)

◮ To couple elements first perform IBPs

∫

Dk

(

lki ∂tΨh − f (Ψh) ∂x l
k
i

)

dx = −
∮

∂Dk

lki n̂ · f ∗ (Ψh)

where the numerical flux is f ∗ (Ψh) = f ∗ (Ψ+,Ψ−)

◮ Ψ+ and Ψ− are the solutions exterior and interior to subdomain Dk ,
restricted to the boundary

◮ Example: Central flux f ∗ = f (Ψ+)+f (Ψ−)
2

◮ Passes information between elements, implements boundary
conditions, and ensures stability of scheme

◮ Choice of f ∗ is, in general, problem dependent
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We have finished

Remark: The term ‘nodal discontinuous Galerkin’ should now be clear.
We seek a global discontinuous solution interpolated at nodal points and
demand this solution satisfy a set of integral (Galerkin) conditions.
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Final comments

◮ Timestep with a classical 4th order Runge-Kutta

◮ Robust for hyperbolic equations as we directly control the scheme’s
stability through a numerical flux choice

◮ For a smooth enough solution, numerical error decays exponentially
with polynomial order N
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Stable treatment of second order operators
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Semi-discrete stability

Generic framework in place, specification of numerical flux remains
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Semi-discrete stability

Generic framework in place, specification of numerical flux remains

◮ We should hope the result is semi-discrete stable
◮ Stablity after spatial discretization

◮ Extensive literature on fully first order hyperbolic systems (e.g.
Lax-Friedrichs flux)

◮ Strange terms like χ′′, (χ′)2, and α′χ′. What to do?
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Second order operators: Key new feature

Consider a model problem (a ≥ 1 for real speeds)

∂tu = u′ + av − u3

∂tv = u′′ + v ′ − (u + v)(u′)2 + v2u2,

◮ Techniques used to treat this system used for GBSSN
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Second order operators: Key new feature

Consider a model problem (a ≥ 1 for real speeds)

∂tu = u′ + av − u3

∂tv = u′′ + v ′ − (u + v)(u′)2 + v2u2,

◮ Techniques used to treat this system used for GBSSN

◮ First rewrite as

∂tu = Q + av − u3

∂tv = Q ′ + v ′ − (u + v)Q2 + v2u2

Q = u′ Q not evolved
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Second order operators: Key new feature

Consider a model problem (a ≥ 1 for real speeds)

∂tu = u′ + av − u3

∂tv = u′′ + v ′ − (u + v)(u′)2 + v2u2,

◮ Techniques used to treat this system used for GBSSN

◮ First rewrite as, and we presently specialize to

∂tu = Q + av − u3

∂tv = Q ′ + v ′ − (u + v)Q2 + v2u2

Q = u′ Q not evolved
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Follow the previous discontinuous Galerkin construction

∫

Dk

lki ∂tuh =

∫

Dk

lki (Qh + avh)

∫

Dk

lki ∂tvh = −
∫

Dk

lki
′(Qh + vh) +

∫

∂Dk

lki (Q
∗ + v∗)

∫

Dk

lki Qh = −
∫

Dk

lki
′uh +

∫

∂Dk

lki u
∗,

◮ Qh is constructed and substituted, thus we see Q is not evolved

◮ The key is specifying a form for Q∗, u∗, and v∗, such that the
resulting scheme is stable.
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Stability of the continuum system

Notice that the continuum system (with Q = u′) with periodic boundary
conditions satisfies

1

2
∂t

∫

Ω

[

av2 + Q2
]

= 0.

◮ Mimic this estimate for our dG scheme. We seek...
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Stability of the continuum system

Notice that the continuum system (with Q = u′) with periodic boundary
conditions satisfies

1

2
∂t

∫

Ω

[

av2 + Q2
]

= 0.

◮ Mimic this estimate for our dG scheme. We seek...

1

2
∂t

kmax
∑

k=1

∫

Dk

(Q2
h + av2h ) ≤ 0
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At each subdomain interface

{{vh}} =
1

2

(

vLk+1/2 + vRk+1/2

)

[[

vh
]]

= vLk+1/2 − vRk+1/2.

Consider numerical fluxes of the form (No need to diagonalize!)

Q∗ = {{Qh}} −
τQ
2

[[

Qh

]]

v∗ = {{vh}} −
τv
2

[[

vh
]]

u∗ = {{uh}} −
τu
2

[[

uh
]]
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Integrate to internal boundaries

1

2
∂t

kmax
∑

k=1

∫

Dk

(Q2
h + av2h ) =

kmax−1
∑

k=1

(

interface terms
)
∣

∣

Ik+1/2

With our choice of numerical flux each subdomain interface term is

−aτv
2

[[

vh
]]2 − a(τu + τQ)

2

[[

Qh

]][[

vh
]]

− τu
2

[[

Qh

]]2
.
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Role of penalties

τu

τ Q

−1 0 1
−1

−0.5

0

0.5

1

τu

−1 0 1
−1

−0.5

0

0.5

1

Figure: The left (τv = 10−6) and right (τv = 1 +
√
2) plots depict stable

choices (determined empirically) of τu and τQ for the linear model system. The
stable regions are colored black, but the jagged edges result from the
discretization of the (τu, τQ)-plane.
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Back to GBSSN

We work with the spherically symmetric version to demonstrate the
general method. Discontinuous Galerkin method directly applies

◮ Introduce locally constructed auxiliary variables
◮ For example Qχ = χ′

◮ Solution is a sum over interpolating polynomials

◮ Integrate against test functions

◮ We use the same penalty choice as discussed for model problem
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Choices

◮ Evolution for conformal metric’s determinant ∂t γ̄ = 0
◮ Used to replace Lnlnγ̄ throughout system

◮ 1+log and Gamma-driver evolution for the lapse and shift (standard
choice)
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Conformal Kerr-Schild Initial data

Physical metric is

ds2 = −α2dt2 + (1 + 2M/R)(dR + βRdt)2 + R2dθ2 + R2 sin2 θdφ2

the lapse α = (1 + 2M/R)−1/2 and shift βR = 2M/(R + 2M)

◮ Conformal metric determinant γ̄ is not unity

◮ Spherically symmetric, analytic, coordinates pass through the
horizon

◮ Inner boundary is outflow, singularity treated by excision
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Stability and convergence (with polynomial order N)

Ω = [.3, 4] and M = 1, left boundary inside the event horizon
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Stability and convergence

◮ Other fields show similar convergence

◮ Hamiltonian, momentum, and conformal connection constraints
converge

◮ A variety of M were tested, similarly a variety of domain sizes and
locations

◮ Perturbing all fields leads to a stable scheme

Main result: We conclude that the scheme is stable in 1D
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Time dependent solutions

We can perturb the initial data

α = αKS +
1

10
exp

(

−1

2
(R − 50)2

)

+
1

10
exp

(

−1

2
(R − 70)2

)
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Future work: Puncture evolutions

If one does not use excision...

◮ Quantities diverge like powers of 1/r near a singularity

◮ Very successful in finite difference codes

2Work being carried out with Michael Wagman
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Future work: Puncture evolutions

If one does not use excision...

◮ Quantities diverge like powers of 1/r near a singularity

◮ Very successful in finite difference codes

As we use subdomains, r = 0 should be included. Some ideas to try2

◮ Gauss-Radau points remove the r = 0 node, likely a 1D trick

◮ When our basis functions are constants, dG is a first order finite
volume method

◮ Turducken (smooth stuffing) around the singularity, perhaps
repeatedly

These may require singularity tracking (vanishing lapse, distribution of
solution’s modes, etc)

2Work being carried out with Michael Wagman
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Future work: 3D solver

◮ Both theory and applications are well-developed for 3D hyperbolic
problems

◮ Open source projects like HEDGE are available (Andreas’ Sunday
talk)

◮ To-do list: punctures and generalization of our numerical flux choice

◮ Questions...
◮ What elements to use? Cubes? Tetrahedrons? Spheres?
◮ Polynomial or tensor product basis?
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Potential benefits of a 3D solver

Potentially useful when...

◮ High-order accuracy needed

◮ Matter fields are present (including shocks)3

◮ Different length scales are present, can use local timestepping
techniques

◮ ∆t might be different in each subdomain

3David Radice and Luciano Rezzolla, arXiv: 1103.2426
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What has been done

◮ Brief remarks on (G)BSSN system

◮ Introduced a discontinuous Galerkin method

◮ Developed a stable and exponentially convergent scheme
◮ Key part is treatment of second order spatial operators

◮ Highlighted potential future work and challenges
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QUESTIONS?
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Metric in ADM form

We may write the full spacetime metric metric as

ds2 = gαβdx
αdxβ = −(α2 − γijβ

iβj)dt2 + 2γijβ
jdtdx i + γijdx

idx j ,

◮ γij is the spatial metric for 3D spatial slice

◮ α is the lapse

◮ βi is the shift

Extrinsic Curvature:

Kij ≡ −1

2
Lnγij = −1

2

1

α
(∂t − Lβ) γij
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(G)BSSN variables

1. Conformal metric (χ’s weight to be specified)

γij ≡ χ−1γ̄ij
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(G)BSSN variables

1. Conformal metric (χ’s weight to be specified)

γij ≡ χ−1γ̄ij

2. Decompose Kij into trace K and traceless Āij parts

Kij = χ−1

(

Āij +
1

3
γ̄ijK

)
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(G)BSSN variables

1. Conformal metric (χ’s weight to be specified)

γij ≡ χ−1γ̄ij

2. Decompose Kij into trace K and traceless Āij parts

Kij = χ−1

(

Āij +
1

3
γ̄ijK

)

3. Conformal connection functions

Γ̄i ≡ γ̄jk Γ̄ijk

The variables are χ, Āij , K , γ̄ij , α, β
i , Γ̄i
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γij ≡ χ
−1
γ̄ij

Traditional BSSN requires γ̄ = 1, and so χ = γ−1/3 is an object of
weight −2/3

◮ The conformal metric and trace-free extrinsic curvature weight −2/3
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Future work
Conclusion

γij ≡ χ
−1
γ̄ij

Traditional BSSN requires γ̄ = 1, and so χ = γ−1/3 is an object of
weight −2/3

◮ The conformal metric and trace-free extrinsic curvature weight −2/3

Generalized BSSN introduces the scalar χ = (γ̄/γ)1/3

◮ The conformal metric and trace-free extrinsic curvature are usual
tensors

◮ Must specify how the conformal metric’s determinant evolves

The GBSSN choice leads to...
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GBSSN evolution system (a small sampling)

Lnχ =
χ

3
(Lnlnγ̄ + 2K ) ,

Lnγ̄ij =
1

3
γ̄ijLnlnγ̄ − 2Āij ,

LnK = − 1

α
D2α+

(

Āij Ā
ij +

1

3
K 2

)

,

LnĀij =
1

3
ĀijLnlnγ̄ + KĀij − 2Āik Ā

k
j + χ

(

Rij −
1

α
DiDjα

)TF

◮ Evolution for conformal metric’s determinant ∂t γ̄ = 0

◮ 1+log and Gamma-driver evolution for the lapse and shift
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GBSSN evolution system (a small sampling)

Lnχ =
χ

3
(Lnlnγ̄ + 2K ) ,

Lnγ̄ij =
1

3
γ̄ijLnlnγ̄ − 2Āij ,

LnK = − 1

α
D2α+

(

Āij Ā
ij +

1

3
K 2

)

,

LnĀij =
1

3
ĀijLnlnγ̄ + KĀij − 2Āik Ā

k
j + χ

(

Rij −
1

α
DiDjα

)TF

◮ Evolution for conformal metric’s determinant ∂t γ̄ = 0

◮ 1+log and Gamma-driver evolution for the lapse and shift
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