NUMERICAL RELATIVITY

ON

CML HYPERSURFACES

LUISA T. BUCHMAN ACCGR, BROWN, MAY 2011

WI TH

JAMES BARDEEN
HeRALD PF E I FF ER
OLIVIER SARBAACH

OUTLINE

Purpose:

Evolve binary black holes on constant mean curvature (CMC) hypersurfaces which reach future null infinity (\mathscr{I}^{+}), for high-accuracy gravitational wave modeling.

Results:
\Rightarrow Initial Data (Bowen-York)
\Rightarrow Bondi-Sachs Energy-Momentum
\Rightarrow Evolution scheme

彞 To compute highly accurate waveforms without losing computational efficiency．

Gravitational radiation is well－defined at \mathscr{I}^{+}（Bondiet al． 1962；Sacho 1962）．Bondi news contains all the gravitational wave information．

橉 No approximate wave extraction at finite radii．
彞 No approximate boundary conditions on a truncated domain．

Conformal compactification gives smaller computational grids．

WHY CMC?

彝Cauchy characteristic matching / extraction (see Winicour; Living Rev. Relativity, 2009 / Reisswig et al., 2010).

蝻 Constant mean curvature (CMC):
\Rightarrow a simple class of hyperboloidal slicing ($\mathrm{Tr} \mathrm{K}=$ const.)
\Rightarrow constraint equations partially decoupled
\Rightarrow compatible with conformal compactification
\Rightarrow match conventional slicing near black holes
\Rightarrow smoothly become asymptotically null

PENROSE DIAGRAM: SCHWARZSCHILD SPACETIME

数 Finite numerical grid extending all the way to \mathscr{I}^{+}．
蝶Problem：compactified spatial coordinates \＆ asymptotically null spatial hypersurfaces
\Rightarrow physical spacetime metric $\mathrm{g}_{\mu \nu}$ singular at \mathscr{I}^{+}．
谱Solution：conformal approach（Penrose 1964）
\Rightarrow conformal factor：$\left.\Omega\right|_{\mathscr{I}^{+}}=0$ ，
\Rightarrow conformal metric：$\tilde{\mathrm{g}}_{\mu \nu}=\Omega^{2} \mathrm{~g}_{\mu \nu}$（regular at \mathscr{I}^{+}）

Hyperboloidal Bowen-York (conformally flat) data on CMC hypersurfaces (Bucbman, Pfeiffer, Bardeen 2009).

Hamiltonian constraint:

$$
\widetilde{\nabla}^{2} \Omega-\frac{3}{2 \Omega} \widetilde{\nabla}_{k} \Omega \tilde{\nabla}^{k} \Omega+\frac{\Omega}{4} \widetilde{\mathcal{R}}+\frac{(\operatorname{Tr} K)^{2}}{6 \Omega}-\frac{\Omega^{5}}{4} \widetilde{A}^{i j} \widetilde{A}_{i j}=0
$$

$\Rightarrow \widetilde{A}_{i j}$ is obtained from known Bowen-York solutions to the momentum constraint: $\widetilde{\nabla}_{j} \widetilde{A}^{i j}=0$
\Rightarrow elliptic equation, singular at $\mathscr{I}^{+}\left(\left.\Omega\right|_{\mathscr{S}^{+}}=0\right)$.
\Rightarrow forces $\left(\widetilde{\nabla}_{k} \Omega \tilde{\nabla}^{k} \Omega\right)_{s^{+}}=\left(\frac{\operatorname{TrK}}{3}\right)^{2}$
Pfeiffer elliptic solver (Caltech-Cornell-CITA SpEC code)
\Rightarrow no special handling of singular terms at \mathscr{I}^{+}.

GENERALIZED BOWEN-YORK SOLUTION

Momentum constraint: $\widetilde{\nabla}_{j} \widetilde{A}^{i j}=0$

$$
\begin{aligned}
\widetilde{\mathrm{A}}_{\mathrm{ij}} & =\frac{\mathrm{C}}{\mathrm{R}^{3}}\left(3 \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}-\delta_{\mathrm{ij}}\right) \quad \text { Schwarzschild } \\
& -\frac{3}{2 \mathrm{R}^{2}}\left[\mathrm{P}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}+\mathrm{P}_{\mathrm{j}} \mathrm{n}_{\mathrm{i}}+\mathrm{P}^{\mathrm{k}} \mathrm{n}_{\mathrm{k}}\left(\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}-\delta_{\mathrm{ij}}\right)\right] \longleftarrow \text { boost upper } \\
& -\frac{3}{\mathrm{R}^{3}}\left[\varepsilon_{\mathrm{ik}} S^{k} \mathrm{~S}^{\prime} \mathrm{n}_{\mathrm{j}}+\varepsilon_{\mathrm{jk} ~}{ }^{\left.k^{k} \mathrm{n}^{\prime} \mathrm{n}_{\mathrm{i}}\right] \longleftarrow \text { spin }}\right. \\
& +\frac{3}{2 \mathrm{R}^{4}}\left[\mathrm{Q}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}+\mathrm{Q}_{\mathrm{j}} \mathrm{n}_{\mathrm{i}}+\mathrm{Q}^{\mathrm{k}} \mathrm{n}_{\mathrm{k}}\left(-5 \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}+\delta_{\mathrm{ij}}\right)\right] \longleftarrow \text { boost lower }
\end{aligned}
$$

Schwarzschild Convergence Study: Ω

BONDI-SACHS ENERGY \& MOMENTUM

True physical quantities defined at \mathscr{J}^{+}for asymptotically flat spacetimes using retarded null coordinates (Bondi, van der Burg, Metzner 1962; Sacho 1962)

Bondi-Sachs Mass aspect M_{A} :

- Monopole moment of M_{A} gives Energy EBS
- Dipole moment of M_{A} gives Linear Momentum $\overrightarrow{\mathrm{P}}_{\mathrm{BS}}$

CMC slicing various methods, e.g. Chruáciel, Jezierski, and Leski 2004
Our approach (Bardeen and Buchman 2011 --in prep.):

- $\dot{\mathscr{I}}^{+}$is the intersection of CMC slice with \mathscr{F}^{+}

For now, focus on the conformally flat case
l => $\dot{\mathscr{J}}^{+}$is a coordinate sphere with radius R_{+}

BONDI-SACHS MASS ASPECT

$$
M_{\mathrm{A}}=-\frac{3}{K}\left[4 c_{3}+\frac{d_{1}}{2}\right]=M_{\Omega}+M_{\mathrm{K}}
$$

c_{3} coefficient in the asymptotic expansion of Ω away from \mathscr{I}^{+} (obtain Ω by solving the Hamiltonian constraint)
$\Rightarrow d_{1} \equiv \frac{K^{2}}{9} R_{+}^{3} \tilde{A}_{i j} N^{i} N^{j} \quad$ (analytic; from Bowen-York solution) N^{k} radial unit vector

溇Additionally, for the conformally flat case, there is a deceptively simple formula for the angular momentum:

$$
\vec{J}=\vec{S}+\vec{D} \times \vec{P}
$$

Boosted Bowen-York Black Hole

- Non-spinning, centered.
- Bowen-York boost P^{z}.
- Irreducible mass:

$$
M_{i r r}=\sqrt{A / 16 \pi}
$$

- Bondi-Sachs mass:

$$
M_{\mathrm{BS}}=\sqrt{\left(E_{\mathrm{BS}}\right)^{2}-\left(\vec{P}_{\mathrm{BS}}\right)^{2}}
$$

- CMC slice: Bondi-Sachs $E_{B S}$, $P_{B S}$ and $M_{B S}$ are the physical quantities, not P^{z} and $\mathrm{M}_{\mathrm{irr}}$.

BBH INITIAL DATA

$\mathrm{R}_{+}=100 \longleftarrow$ location of \mathscr{I}^{+}
$\mathrm{D}=12 \leftarrow$ distance between holes
$M_{\text {irr }}($ hole A $)=0.53$
$M_{\text {irr }}($ hole $B)=0.27$
$M_{\text {irr }}=0.80$
$\mathrm{M}_{\mathrm{BS}}=0.98 \longleftarrow$ physical mass
$\vec{S}($ hole $A)=0.4 \hat{y}$
$\vec{S}($ hole B) $=-0.1 \hat{y}$
$\overrightarrow{\mathrm{J}}=0.3 \hat{y}+0.7 \hat{z} \longleftarrow$ physical angular momentum
$\vec{P}_{\mathrm{BS}}=0 \longleftarrow$ total physical linear momentum
$R_{+}=33.3$
results same 20\% less wall-clock time

CONFORMAL EVOLUTION ON HYPERBOLOIDAL SLICES

\Rightarrow Friedrich 1983 hyperbolic, manifestly regular, tetrad (Weyl tensor)

- numerical (Frauendiener review 2004).
\Rightarrow Zenginoğlu 2008 hyperbolic, generalized harmonic, metric-based
- numerical (Zenginoğlu and Tiglio 2009; Zenginoğlu and Kiддer 2010)
\Rightarrow Moncrief \& Rinne 2009 hyperbolic-elliptic, metric-based, CMC
- numerical (Rinne 2010) long-term stable dynamical Einstein evolution in axisymmetry
\Rightarrow Bardeen, Sarbach \& Buchman 2011 hyperbolic-elliptic, tetrad, CMC (BSB scheme)

CONFORMAL EVOLUTION: BSB SCHEME
 Tetrad variables: 24 connection coefficients à la Estabrook and Wablquist 1964

$\hat{\tilde{K}}_{a b} \leftarrow$ traceless part of the conformal extrinsic curvature, $\tilde{K}_{a b}$
$\hat{\tilde{N}}_{a b} \leftarrow$ symmetric traceless part of $\tilde{N}_{a b}$, which is the dyadic form of the spatial conformal connection coefficients (5)
$\tilde{B}_{a}^{k} \leftarrow$ coordinate components of conformal spatial triad vectors (9)
$\tilde{K}, \tilde{N}^{\circ} \leftarrow$ traces of $\tilde{K}_{a b}, \tilde{N}_{a b}$ respectively (1)
$\tilde{n}_{b}^{\pi 0} \leftarrow$ antisymmetric part of $\tilde{N}_{a b}$
$\tilde{\omega}_{b} \leftarrow$ conformal angular velocity wrt Fermi Walker transport (3)
$\tilde{a}_{b} \nleftarrow$ conformal acceleration of tetrad frame
$\tilde{\alpha}^{\nu} \leftarrow$ conformal lapse (1)
$\Omega \leftarrow$ conformal factor (1)
Note: all variables are scalar fields on CMC slice except
$\beta^{k} \leftarrow$ coordinate components of shift vector (3)

- Hypersurface-orthogonal fixes tetrad boost freedom: $\quad \tilde{a}_{b}=\tilde{B}_{a}^{k} \partial_{k} \log \tilde{\alpha}$
- CMC slicing fixes $\tilde{\alpha}$ elliptic
-3D Nester gauge motivates choice of conformal gauge and fixes tetrad rotational freedom, so that

$$
\tilde{n}_{b}=0, \tilde{N}=0
$$

- Ω determined by Hamiltonian constraint elliptic
- Preservation of 3D Nester gauge in time gives elliptic equatons for $\tilde{\omega}_{b}, \tilde{K}$ elliptic
- Shift: several alternatives elliptic

Hypersurfaceorthogonal gauge condition

EVOLUTION EQUATIONS

$$
\begin{aligned}
& \text { Note: } \\
& \tilde{D}_{0}=\frac{1}{\tilde{\alpha}}\left(\partial_{t}-\mathcal{L}_{\beta}\right), \tilde{D}_{a}=\tilde{B}_{a}^{k} \partial_{k}
\end{aligned}
$$

Maxwell-like:

$$
\begin{aligned}
& \tilde{D}_{0} \hat{\tilde{N}}_{a b}+\tilde{D}_{c} \hat{\tilde{K}}_{d(a} \varepsilon_{b) c d}=\ldots \\
& \tilde{D}_{0} \hat{\tilde{K}}_{a b}-\tilde{D}_{c} \hat{\tilde{N}}_{d(a} \varepsilon_{b) c d}=\ldots
\end{aligned}
$$

Plus advection equation for conformal triad vectors

$$
\tilde{D}_{0} \tilde{B}_{a}^{k}=\ldots
$$

19 total evolution equations

REGULARITY CONDITIONS

Singularities at \mathscr{J}^{+}in equations for:

- $\Omega, \tilde{\alpha}$ Singularities in these elliptic equations force the solutions to have particular asymptotic behaviors (recall example on slide 7).
- $\hat{\tilde{K}}_{a b}$ Singularity in source term of this evolution equation is finite with the following conditions:

1. $\hat{\tilde{\kappa}}_{a b} \doteq \hat{\tilde{K}}_{a b}$, where $\hat{\tilde{\tilde{K}}}_{a b}$ is the 2 D traceless extrinsic curvature of $\dot{\mathscr{I}}^{+}$. This is the zero-shear condition.
2. Penrose regularity condition, that the conformally invariant Weyl tensor vanish at \mathscr{I}^{+}.

- Once imposed in the initial conditions, these regularity conditions are preserved by the evolution equations.

BOUNDARY CONDITIONS AT \mathscr{I}^{+}

None required for the evolution equations.
BCs on the elliptic equations -- an advantage!

- BC on shift equation ensures:

1. R_{+}is kept at a fixed coordinate radius,
2. the angular coordinates of $\dot{\mathscr{I}}^{+}$are propagated along the null generators of \mathscr{I}^{+},
3. a simple relation between the computational coordinates and standard polar coordinates on $\dot{\mathscr{I}}^{+}$.

- BC on \tilde{K} keeps the intrinsic geometry of $\dot{\mathscr{I}}^{+}$a 2 -sphere with constant area $4 \pi \xi_{0}^{-2}$. This implies that the expansion of \mathscr{I}^{+}vanishes.
- BC on $\tilde{\alpha}$ makes the time coordinate correspond to retarded Minkowski time at \mathscr{I}^{+}.

Because of the above properties, we obtain a simple expression for Bondi news function in terms of our variables (next slide):

BONDI NEWS!

$\frac{3}{K \xi_{0}} \check{\chi}_{A B}$

$\widetilde{\chi}_{A B}$ is the asymptotic gravitational wave amplitude.
** It is equal to the traceless part of the 2D extrinsic curvature of $\dot{\mathscr{I}}^{+}$, which is a tensor that can be calculated in any coordinate system. Note that (A, B) are the angular coordinates on the 2 -sphere $\dot{\mathscr{I}}^{+}$.

SUMMARY

数Seek to evolve binary black holes on CMC hypersurfaces which reach future null infinity (\mathscr{I}^{+}) for high-accuracy gravitational wave modeling.

Results presented:
i) Generalized hyperboloidal Bowen-York binary black hole initial data.
ii) Bondi-Sachs energy and momentum for data on CMC slices (limited presentation to Bowen-York data).
iii) Evolution scheme.

