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Outline
Purpose:

Evolve binary black holes on constant mean 
curvature (CMC) hypersurfaces which reach 
future null infinity (       ), for high-accuracy 
gravitational wave modeling.

Results:

➡Initial Data (Bowen-York)

➡Bondi-Sachs Energy-Momentum

➡Evolution scheme
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Why     ?
To compute highly accurate waveforms without losing 
computational efficiency.

Gravitational radiation is well-defined at      (Bondi et al. 
1962; Sachs 1962). Bondi news contains all the gravitational 
wave information.

No approximate wave extraction at finite radii.

No approximate boundary conditions on a truncated 
domain.

Conformal compactification gives smaller computational 
grids.
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Why CMC?
Cauchy characteristic matching / extraction (see Winicour, 
Living Rev. Relativity, 2009 / Reisswig et al.,  2010). 

Constant mean curvature (CMC):

➡a simple class of hyperboloidal slicing (TrK = const.)

➡constraint equations partially decoupled

➡compatible with conformal compactification

➡match conventional slicing near black holes

➡smoothly become asymptotically null



Penrose diagram: Schwarzschild spacetime
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KM = 0.68
Rms/2M = 1.6
K2C = 1.7

Colin Rice

CMC slicing

R

T



        finite coordinate radius

Finite numerical grid extending all the way to     .

Problem: compactified spatial coordinates & 
asymptotically null spatial hypersurfaces

➡physical spacetime metric        singular at      . 

Solution: conformal approach (Penrose 1964)

➡conformal factor:                ,

➡ conformal metric:                      (regular at        )    
g µν = Ω2gµν
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Initial Data
Hyperboloidal Bowen-York (conformally flat) data on CMC 
hypersurfaces (Buchman, Pfeiffer, Bardeen 2009).

Hamiltonian constraint:          

    

➡        is obtained from known Bowen-York solutions to the 
momentum constraint: 

➡ elliptic equation, singular at         (                  ).

➡ forces 

Pfeiffer elliptic solver (Caltech-Cornell-CITA SpEC code)

➡ no special handling of singular terms at         . 
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Generalized Bowen-York solution 



Rms = 0.13 R+ = 100

M = 0.85
K = 0.1
C = 1.0

numeric to analytic (solid lines) 
            numeric truncation error (dotted lines)

ΩSchwarzschild Convergence Study:



Conformal factor for 
mass ratio 2:1 boosted 

spinning BBH
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True physical quantities defined at        for asymptotically flat spacetimes 
using retarded null coordinates (Bondi, van der Burg, Metzner 1962; Sachs 1962)

Bondi-Sachs Mass aspect  MA:

- Monopole moment of MA  gives Energy EBS

- Dipole moment of MA  gives Linear Momentum PBS

CMC slicing various methods, e.g. Chruściel, Jezierski, and Leski 2004 

Our approach (Bardeen and Buchman 2011 --in prep.):

‣          is the intersection of CMC slice with 

‣  =>            is a coordinate sphere with radius R+

For now, focus on the conformally flat case

Bondi-Sachs Energy & Momentum
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Bondi-Sachs mass aspect  

Additionally, for the 
conformally flat case, there is 
a deceptively simple formula 
for the angular momentum: 

MA = −
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4c3 +

d1
2

⎡
⎣⎢

⎤
⎦⎥

 


J =

S +

D ×

P

= MΩ + MK

➡       coefficient in the asymptotic expansion of       away from          
(obtain      by solving the Hamiltonian constraint)

➡                                 (analytic; from Bowen-York solution) 
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•Non-spinning, centered.

•Bowen-York boost Pz .

•Irreducible mass:

 

•Bondi-Sachs mass:

                 

•CMC slice: Bondi-Sachs EBS, 
PBS and MBS are the physical 
quantities, not Pz and Mirr.

Boosted Bowen-York Black Hole

Mirr = A / 16π

 
MBS = EBS( )2 − PBS( )2



Bondi-Sachs 
physical quantities 

for 
BBH initial data

  

R+ =100

D =12

Mirr (hole A) = 0.53

Mirr (hole B) = 0.27

Mirr = 0.80

MBS  = 0.98

S (hole A) = 0.4ŷ

S (hole B) = -0.1ŷ

J = 0.3ŷ + 0.7ẑ

PBS = 0

20% less 
wall-clock 

time

 

R+ = 33.3
results same

physical mass

physical angular momentum
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distance between holes



conformal evolution on 
hyperboloidal slices

➡Friedrich 1983 hyperbolic, manifestly regular, tetrad (Weyl tensor)

• numerical (Frauendiener review 2004). 

➡Zenginoglu 2008 hyperbolic, generalized harmonic, metric-based

• numerical (Zenginoglu and Tiglio 2009; Zenginoglu and Kidder 2010 )

➡Moncrief & Rinne 2009 hyperbolic-elliptic, metric-based, CMC

• numerical (Rinne 2010) long-term stable dynamical Einstein evolution 
in axisymmetry

➡Bardeen, Sarbach & Buchman 2011 hyperbolic-elliptic, tetrad, CMC 
(BSB scheme)

˘
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̂Kab  ←  traceless part of the conformal extrinsic curvature, Kab  (5)

̂Nab  ←  symmetric traceless part of Nab ,which is the dyadic form 

                 of the spatial conformal connection coefficients (5)
Ba

 k   ←  coordinate components of conformal spatial triad vectors (9)
K , N ←  traces of Kab , Nab  respectively (1)

nb     ←  antisymmetric part of  Nab

ωb    ←  conformal angular velocity wrt Fermi Walker transport (3)

ab     ←  conformal acceleration of tetrad frame
α     ←  conformal lapse (1)

Ω    ←  conformal factor (1)

β k    ←  coordinate components of shift vector (3)

Note: all variables 
are scalar fields on 
CMC slice except      

Tetrad variables: 24 connection coefficients à la Estabrook and Wahlquist 1964

conformal evolution: BSB scheme
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•Hypersurface-orthogonal fixes tetrad 
boost freedom: 

•CMC slicing fixes        elliptic

•3D Nester gauge motivates choice of 
conformal gauge and fixes tetrad 
rotational freedom, so that 

•      determined by Hamiltonian constraint 
elliptic

•Preservation of 3D Nester gauge in time 
gives elliptic equatons for              elliptic

•Shift: several alternatives elliptic

Σt

Σt+Δt

Gauge conditions

 
ab = Ba

 k∂k log α

 α

 
nb = 0,  N = 0

Ω

 
ωb ,  K



Evolution Equations

Maxwell-like:

Plus advection equation for conformal triad vectors

19 total evolution equations

 

D0
̂Nab + Dc

̂Kd (aεb)cd = ...

D0
̂Kab − Dc

̂Nd (aεb)cd = ...

 
D0
Ba
k = ...

Note: 

  
D0 =

1
α
∂t −Lβ( ),  Da = Ba

 k∂k



Singularities at         in equations for:

•            Singularities in these elliptic equations force the solutions to 
have particular asymptotic behaviors (recall example on slide 7).

•         Singularity in source term of this evolution equation is finite with 
the following conditions: 

1.                , where        is the 2D traceless extrinsic curvature of          
This is the zero-shear condition.

2. Penrose regularity condition, that the conformally invariant Weyl 
tensor vanish at

•  Once imposed in the initial conditions, these regularity conditions are 
preserved by the evolution equations.

Regularity Conditions

 
̂κ ab = ̂Kab

 Ω,  α
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None required for the evolution equations.

BCs on the elliptic equations -- an advantage!

• BC on shift equation ensures: 

1. R+ is kept at a fixed coordinate radius,

2. the angular coordinates of        are propagated along the null 
generators of        

3. a simple relation between the computational coordinates and standard 
polar coordinates on 

• BC on       keeps the intrinsic geometry of        a 2-sphere with constant 
area              .  This implies that the expansion of           vanishes.

• BC on     makes the time coordinate correspond to retarded Minkowski time 
at 

Because of the above properties, we obtain a simple expression for Bondi news 
function in terms of our variables (next slide):

Boundary Conditions at 
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          is the asymptotic gravitational wave amplitude. 

It is equal to the traceless part of the 2D extrinsic curvature of          
which is a tensor that can be calculated in any coordinate system. 
Note that (A,B) are the angular coordinates on the 2-sphere  

 

3
Kξ0
χAB

Bondi News!

 

χAB

  I + .
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Summary

Seek to evolve binary black holes on CMC hypersurfaces 
which reach future null infinity (      ) for high-accuracy 
gravitational wave modeling.

Results presented:

i)Generalized hyperboloidal Bowen-York binary black 
hole initial data.

ii)Bondi-Sachs energy and momentum for data on CMC 
slices (limited presentation to Bowen-York data).

iii) Evolution scheme.
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