NUMERICAL RELATIVITY ON CMC HYPERSURFACES

LUISA T. BUCHMAN ACCGR, BROWN, MAY 2011

WITH JAMES BARDEEN HARALD PFEIFFER OLIVIER SARBACH

%Purpose:

Evolve binary black holes on constant mean curvature (CMC) hypersurfaces which reach future null infinity (\mathcal{I}^+), for high-accuracy gravitational wave modeling.

Results:

Initial Data (Bowen-York)

Bondi-Sachs Energy-Momentum

Evolution scheme

To compute highly accurate waveforms without losing computational efficiency.

Scravitational radiation is well-defined at *I*⁺ (*Bondi et al.* 1962; Sachs 1962). Bondi news contains all the gravitational wave information.

* No approximate wave extraction at finite radii.

* No approximate boundary conditions on a truncated domain.

Conformal compactification gives smaller computational grids.

Cauchy characteristic matching / extraction (see Winicour, Living Rev. Relativity, 2009 / Reisswig et al., 2010).

Constant mean curvature (CMC):

a simple class of hyperboloidal slicing (TrK = const.) constraint equations partially decoupled compatible with conformal compactification match conventional slicing near black holes smoothly become asymptotically null

PENROSE DIAGRAM: SCHWARZSCHILD SPACETIME

$\mathscr{I}^+ \rightarrow FINITE COORDINATE RADIUS$

* Finite numerical grid extending all the way to *I*⁺.

Problem: compactified spatial coordinates & asymptotically null spatial hypersurfaces

 \Rightarrow physical spacetime metric $g_{\mu\nu}$ singular at \mathscr{F}^+ .

Solution: conformal approach (Penrose 1964)

 \Rightarrow conformal factor: $\Omega|_{\mathscr{F}^+} = 0$,

 \Rightarrow conformal metric: $\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}$ (regular at \mathscr{I}^+)

INITIAL DATA

- * Hyperboloidal Bowen-York (conformally flat) data on CMC hypersurfaces (Buchman, Pfeiffer, Bardeen 2009).
 - Hamiltonian constraint: $\widetilde{\nabla}^2 \Omega - \frac{3}{2\Omega} \widetilde{\nabla}_k \Omega \widetilde{\nabla}^k \Omega + \frac{\Omega}{4} \widetilde{\mathcal{R}} + \frac{(TrK)^2}{6\Omega} - \frac{\Omega^5}{4} \widetilde{A}^{ij} \widetilde{A}_{ij} = 0$ \overrightarrow{A}_{ij} is obtained from known Bowen-York solutions to the momentum constraint: $\widetilde{\nabla}_i \widetilde{A}^{ij} = 0$
 - \Rightarrow elliptic equation, singular at \mathscr{I}^+ ($\Omega|_{\mathscr{I}^+} = 0$).
 - $\implies \text{forces} \quad \left(\widetilde{\nabla}_k \Omega \widetilde{\nabla}^k \Omega\right)_{\mathscr{I}^+} = \left(\frac{\text{TrK}}{3}\right)^2$
- ** Pfeiffer elliptic solver (Caltech-Cornell-CITA SpEC code)
 - \blacksquare no special handling of singular terms at \mathscr{I}^+ .

GENERALIZED BOWEN-YORK SOLUTION

Momentum constraint: $\widetilde{\nabla}_{j}\widetilde{A}^{ij}=0$

BONDI-SACHS ENERGY & MOMENTUM

True physical quantities defined at I⁺ for asymptotically flat spacetimes using retarded null coordinates (Bondi, van der Burg, Metzner 1962; Sachs 1962)

Bondi-Sachs Mass aspect MA:

- Monopole moment of MA gives Energy EBS
- Dipole moment of M_A gives Linear Momentum \vec{P}_{BS}

* CMC slicing various methods, e.g. Chruściel, Jezierski, and Leski 2004
Our approach (Bardeen and Buchman 2011 --in prep.):

\$\vec{F}^+\$ is the intersection of CMC slice with \$\vec{F}^+\$
 For now, focus on the conformally flat case
 \$=>\$\vec{F}^+\$ is a coordinate sphere with radius \$R_+\$

BONDI-SACHS MASS ASPECT

$$M_{\rm A} = -\frac{3}{K} \left[4c_3 + \frac{d_1}{2} \right] = M_{\Omega} + M_{\rm K}$$

 $rightarrow c_3$ coefficient in the asymptotic expansion of Ω away from \mathscr{I}^+ (obtain Ω by solving the Hamiltonian constraint)

 $\Rightarrow d_1 \equiv \frac{K^2}{9} R_+^3 \tilde{A}_{ij} N^i N^j \quad \text{(analytic; from Bowen-York solution)}$ $N^k \text{ radial unit vector}$

Additionally, for the conformally flat case, there is a deceptively simple formula for the angular momentum:

$$\vec{J} = \vec{S} + \vec{D} \times \vec{P}$$

BOOSTED BOWEN-YORK BLACK HOLE

- Non-spinning, centered.
- Bowen-York boost P^z.
- Irreducible mass:

$$M_{irr} = \sqrt{A / 16\pi}$$

• Bondi-Sachs mass:

$$M_{\rm BS} = \sqrt{\left(E_{\rm BS}\right)^2 - \left(\vec{P}_{\rm BS}\right)^2}$$

• CMC slice: Bondi-Sachs E_{BS}, P_{BS} and M_{BS} are the physical quantities, not P^z and M_{irr}.

BONDI-SACHS PHYSICAL QUANTITIES FOR BBH INITIAL DATA

 $R_{+} = 100 \longleftarrow \text{location of } \mathscr{I}^{+}$ $D = 12 \leftarrow distance between holes$ M_{irr} (hole A) = 0.53 M_{irr} (hole B) = 0.27 $M_{irr} = 0.80$ S (hole A) = $0.4\hat{y}$ \vec{S} (hole B) = -0. \hat{ly} $\vec{J} = 0.3\hat{y} + 0.7\hat{z}$ \leftarrow physical angular momentum $\vec{P}_{RS} = 0$ \leftarrow total physical linear momentum

CONFORMAL EVOLUTION ON HYPERBOLOIDAL SLICES

- Friedrich 1983 hyperbolic, manifestly regular, tetrad (Weyl tensor)
 numerical (*Frauendiener review 2004*).
- Zenginoğlu 2008 hyperbolic, generalized harmonic, metric-based
 numerical (*Zenginoğlu and Tiglio 2009; Zenginoğlu and Kidder 2010*)
 Moncrief & Rinne 2009 hyperbolic-elliptic, metric-based, CMC
 numerical (*Rinne 2010*) long-term stable dynamical Einstein evolution in axisymmetry
- Bardeen, Sarbach & Buchman 2011 hyperbolic-elliptic, tetrad, CMC (BSB scheme)

CONFORMAL EVOLUTION: BSB SCHEME

Tetrad variables: 24 connection coefficients à la Estabrook and Wahlquist 1964

GAUGE CONDITIONS

• Hypersurface-orthogonal fixes tetrad boost freedom: $\tilde{a}_b = \tilde{B}_a^k \partial_k \log \tilde{\alpha}$

• CMC slicing fixes $\tilde{\alpha}$ elliptic

• 3D Nester gauge motivates choice of conformal gauge and fixes tetrad rotational freedom, so that $\tilde{n}_{b} = 0, \ \tilde{N} = 0$

• Ω determined by Hamiltonian constraint *elliptic*

• Preservation of 3D Nester gauge in time gives elliptic equatons for $\tilde{\omega}_b$, \tilde{K} elliptic

• Shift: several alternatives *elliptic*

EVOLUTION EQUATIONS

$$\begin{cases} Note: \\ \tilde{D}_0 = \frac{1}{\tilde{\alpha}} (\partial_t - \mathcal{L}_\beta), \ \tilde{D}_a = \tilde{B}_a^k \partial_k \end{cases}$$

Maxwell-like:

$$\begin{split} &\tilde{D}_0 \hat{\tilde{N}}_{ab} + \tilde{D}_c \hat{\tilde{K}}_{d(a} \mathcal{E}_{b)cd} = \dots \\ &\tilde{D}_0 \hat{\tilde{K}}_{ab} - \tilde{D}_c \hat{\tilde{N}}_{d(a} \mathcal{E}_{b)cd} = \dots \end{split}$$

Plus advection equation for conformal triad vectors

$$\tilde{D}_0 \tilde{B}_a^k = \dots$$

#19 total evolution equations

REGULARITY CONDITIONS

Singularities at \mathcal{I}^+ in equations for:

- Ω , $\tilde{\alpha}$ Singularities in these elliptic equations force the solutions to have particular asymptotic behaviors (recall example on slide 7).
- $\hat{\tilde{K}}_{ab}$ Singularity in source term of this evolution equation is finite with the following conditions:
 - 1. $\hat{\tilde{K}}_{ab} \doteq \hat{\tilde{K}}_{ab}$, where $\hat{\tilde{K}}_{ab}$ is the 2D traceless extrinsic curvature of $\dot{\mathcal{I}}^+$. This is the zero-shear condition.
 - 2. Penrose regularity condition, that the conformally invariant Weyl tensor vanish at \mathscr{I}^+ .
- Once imposed in the initial conditions, these regularity conditions are preserved by the evolution equations.

BOUNDARY CONDITIONS AT \mathscr{I}^+

* None required for the evolution equations.

- BCs on the elliptic equations -- an advantage!
 - BC on shift equation ensures:
 - 1. R+ is kept at a fixed coordinate radius,
 - 2. the angular coordinates of \mathscr{I}^+ are propagated along the null generators of \mathscr{I}^+ ,
 - 3. a simple relation between the computational coordinates and standard polar coordinates on $\dot{\mathscr{I}}^+$.
 - BC on \tilde{K} keeps the intrinsic geometry of $\dot{\mathscr{I}}^+$ a 2-sphere with constant area $4\pi\xi_0^{-2}$. This implies that the expansion of \mathscr{I}^+ vanishes.
 - BC on $\tilde{\alpha}$ makes the time coordinate correspond to retarded Minkowski time at \mathscr{I}^+ .
- Because of the above properties, we obtain a simple expression for Bondi news function in terms of our variables (next slide):

 $\frac{3}{K\xi_0}\breve{\chi}_{AB}$

 $\overset{\sim}{\times}$ χ_{AB} is the asymptotic gravitational wave amplitude.

* It is equal to the traceless part of the 2D extrinsic curvature of $\dot{\mathscr{I}}^+$, which is a tensor that can be calculated in any coordinate system. Note that (*A*,*B*) are the angular coordinates on the 2-sphere $\dot{\mathscr{I}}^+$.

Seek to evolve binary black holes on CMC hypersurfaces which reach future null infinity (*I*⁺) for high-accuracy gravitational wave modeling.

Results presented:

i)Generalized hyperboloidal Bowen-York binary black hole initial data.

ii)Bondi-Sachs energy and momentum for data on CMC slices (limited presentation to Bowen-York data).

iii) Evolution scheme.